
07.1

Proceedings . 3rd International Space Syntax Symposium Atlanta 2001

07

Introduction

This paper is about computational design, that is, about using rules and algorithms to create

designs. I have therefore given a rule for the title of the paper: Either/0r And. This

means: the words "either/or" become, are replaced with, or are transformed into, the word

"and". This rule encapsulates a theme that runs through all of the writings of the Bauhaus

legend, Wassily Kandinsky. Kandinsky, and his colleague at the Bauhaus, Paul Klee, were

pioneers of abstract, nonrepresentational art. In their writings and teachings, Kandinsky and

Klee examined in depth the basic elements of composition in art and architecture. They

proposed sophisticated and subtle theories of form and form production. It is thus fitting

to revisit them in a discussion of morphology and design, the theme of this session.

Kandinsky and Klee covered a lot of ground in their writings. Designers, theorists,

writers, and teachers have turned to them again and again over the years for their insights in

many areas. When I recommended to one of my graduate students that he read Klee's

Pedagogical Sketchbook, I was drawn into rereading this book myself, and then further into

rereading more of Klee's and Kandinsky's writings. Not surprisingly, I found that, in many

ways, they anticipated some fundamental concerns of computation and design today. So I

will frame my discussion of computation and design in terms of some important and timely

ideas from Kandinsky and Klee.

Foremost among Kandinsky's concerns was the reconciliation of seemingly opposing or

contradictory issues and agendas. He writes of the many misguided dualisms in the art

theory and pedagogy of his time, and the pressing need to bring opposing trends into one

"Great Synthesis", to make connections between apparently widely separated realms. Kandinsky

maintained that wherever there is talk of "either this or that", work must strive for "this and

that". "Dispersion", he writes, must be replaced by "integration". "Either-or" must give way

to "and". He believed that a new integrative trend in art was just beginning, and that "it is

within art that this new trend--"and" first becomes apparent, but it also dawns here and there

in other areas, and slowly backs will be turned on "either-or".

What were the dualisms that preoccupied Kandinsky? Have they been resolved? Are they

relevant to design today, in particular to computational design? Here I will look at three

dualisms that Kandinsky and Klee addressed, but from the perspective of computation and

design. I will also look at two new dualisms that Klee and Kandinsky did not consider.

Keywords:

computational

design, rules,

algorithms,

Kandisky, Klee, non-

representational art,

creativity

Dr. Terry W. Knight

Associate professor

of design and

computation,

Department of

Architecture MIT,

77 Massachusetts

Avenue,

Cambridge MA 02139

USA

tknight@mit.edu

+1 617 253-8044

Either/Or And

Terry W. Knight
Massachusetts Institute of Technology, USA

 Terry Knight: Either/Or And

07.2

These are ones that have arisen in recent years specifically with respect to computation and

design. The first three dualisms are posed as rules in which either/or is replaced with and.

These are rules which can be applied in computational design. They reconcile and integrate

issues often seen as incompatible in computational design. The last two dualisms are posed

as possible rules. Whether and how the components of these rules can be reconciled, or

whether they are fundamentally incompatible, are open questions.

The five rules are:

1 either analysis or synthesis analysis and synthesis

2 either form or content form and content

3 either calculation or intuition calculation and intuition

4 either emergence or predictability emergence and predictability ?

5 either intelligibility or productivity intelligibility and productivity ?

I will consider each of these rules in turn. But first, some background.

The most well known and influential writings of Kandinsky and Klee come from the

1920s. Work on the first formal theories of computation was going on at the same time.

The first publications on computation appeared in the 1930s. The names of the pioneers of

computation will be familiar to some: Turing, Church, Godel, and others. These mathema-

ticians, logicians, and philosophers proposed models of what it means formally, theoreti-

cally, and philosophically to compute something, or to solve something algorithmically.

They laid the foundations for all subsequent work on computation, and for all the various

paths that computation has taken over the past century.

The kind of computation I do is with shape grammars. Shape grammars were one of

the earliest computational systems developed specifically for design. They were also one of

the earliest visual computational systems for design. With a shape grammar, designs are

constructed or computed using rules made up of 2 or 3 dimensional shapes. A computation

with a shape grammar is a sequence of shapes where each shape is generated from the

previous shape by applying a rule. By contrast, the computational models proposed by

Turing and others were entirely textual or verbal. They computed with rules made up of

symbols and numbers. The differences between computing with shapes as opposed to

symbols and numbers cannot be overemphasized. These differences have been considered

in depth by one of the inventors of shape grammars, George Stiny.

Many other computational systems for design are being used and developed today. My

discussion of the rules or dualisms above will be in relation not just to shape grammars but

to computation in general.

1 either analysis or synthesis analysis and synthesis

Kandinsky equates analysis with "dissection" and synthesis with "connection". Analysis has

to do with taking things apart and viewing the resulting parts in isolation. Synthesis has to

do with putting disparate things together. Kandinsky's pictorial theory requires both analysis

and synthesis. He sees "analysis as a means to synthesis."1 Theory, he says, needs:

1. To specify the primary elements and designate the more diverse and
complicated that issue from them--the analytical part,
2. The possible laws for the grouping of those elements within a work--
the synthetic part.2

07.3

Proceedings . 3rd International Space Syntax Symposium Atlanta 2001

Synthesis has the narrow meaning above for Kandinsky. More broadly and importantly,

though, synthesis is the putting together and connecting of disparate ideas and thoughts.

For Kandinsky, the ultimate goal of art pedagogy is to make one final connection or synthe-

sis--the "Great Synthesis", as he called it. In the Great Synthesis, "The irreconcilable is recon-

ciled. Two opposing paths lead to one goal--analysis, synthesis. Analysis + synthesis = the

Great Synthesis".3

Klee puts his own twist on analysis and synthesis. This is an emphasis on process--on

understanding both analysis and synthesis in terms of growth or development. He first

introduces the notion of analysis through simple examples from chemistry. He then writes,

"In our business [art] the motives for analysis are naturally different [from those in chemis-

try]. We do not undertake analyses of works because we want to copy them or because we

suspect them [as in chemistry]. We investigate the methods by which another has created his

work, in order to set ourselves in motion."4 In other words, we use analysis to set ourselves

in motion to do something of our own, to do synthesis. Klee continues, "One particular

kind of analysis is the examination of a work with a view to the stages of its coming-into-

being. This kind I call the analysis of 'genesis'".5 For Klee, the core of both analysis and

synthesis is the dynamic processes that take us from the conception of a work of art to its

completion. Klee describes these processes as akin to evolutionary or biological processes. A

work of art evolves step-by-step like a living organism. For Klee, composition is, in essence,

a kind of organic computation.

How are analysis and synthesis reconciled in computational design? At a fundamental

level, computational systems simultaneously embody both analysis and synthesis. The

relationship between computation and synthesis is straightforward. Computational sys-

tems are, by definition, creative or synthetic. They compute, generate, create, or synthesize

things. A shape grammar, for example, creates designs. Shape grammars and other compu-

tational systems also capture nicely the process view of synthesis so integral to Klee's theory

of art. The relationship between computation and analysis is perhaps not so obvious.

However, analysis is as intrinsic to computation as synthesis. Computational systems are,

themselves, analyses or descriptions of the things they generate. For example, the applica-

tions of rules in a shape grammar provide analytic decompositions--what George Stiny calls

topologies6--of the designs they generate. Shape grammar computations are dynamic de-

scriptions in the sense that Klee had in mind for analysis.

Computational systems inherently embrace and unify the analytic and the synthetic.

Applications of computational systems also embrace the analytic and the synthetic, but at a

different level. In analysis applications, computation is used to analyze or model known or

existing things. In synthesis applications, computation is used to create or synthesize novel,

unknown things. Often, these two kinds of applications overlap.

Within the history of computation, different strands of computation can be identified

that focus more or less on analysis or synthesis. For example, early production systems from

the 40s and 50s, such as those of Post in logic and those of Chomsky in linguistics, focused

on analysis. Chomsky developed his generative grammars to model existing natural lan-

guages, not to generate new languages. A different strand of computation, one with a

biological bent, has a decidedly different focus. This strand begins with Von Neuman's

cellular automata of the 50s, continues to the evolutionary computational methods begun in

the 70s, and then up to artificial life systems of today. Computational systems along this line

 Terry Knight: Either/Or And

07.4

have been used to model existing phenomena. But they are geared to do much more. They

are geared toward the creation of the new and the novel. And in recent years, they have been

increasingly tapped for their creative potential. Evolutionary and artificial life systems are used

today to synthesize new and compelling life-like forms, new forms of art, architecture, and

engineering. These biologically-inspired computational design efforts would likely have caught

the attention of Paul Klee.

Where do shape grammars sit in the assortment of computational methods and appli-

cations? Shape grammars are production systems like those of Post and Chomsky. But like

other "biological" kinds of computation, shape grammar applications are equally at home in

analysis and synthesis, and have had much success in both areas. Shape grammars have been

developed to analyze historic and contemporary design languages in virtually all areas of

visual and spatial design. They have also been used in studio or classroom settings to create

new and original designs. Recent applications of shape grammars merge analysis and synthe-

sis by beginning with the grammatical analysis of known designs as a way toward the devel-

opment of grammars for new designs. In these efforts, analysis is used "to set ourselves in

motion".

The space syntax techniques developed by Bill Hillier and others use computation of a

nongenerative, nonrule-based kind, and thus fall outside the definition of computation I

am using here. However, like early production systems, space syntax is computation that is

analytically oriented. But space syntax techniques are often embedded in creative design

processes to evaluate proposed designs and to point to new design possibilities.

2 either form or content form and content

Here is a more familiar dualism, both for the nonrepresentational art that Klee and Kandinsky

pioneered in the 20s, and for computational design today.

Klee and Kandinsky were unequivocal about form and content, not form or content.

Klee's understanding of form is process-oriented. For Klee, the study of form is the study

of "form-making". Klee considers form as "genesis, growth, essence".7 "Form", he says, "is

set by the process of giving form, which is more important than form itself."8 He uses the

term Gestaltung for the study of form because it "emphasizes the paths to form rather than

the form itself."9 These views are not unlike the design computation point of view! And like

many a design computationalist, Klee wishes to "avoid the misconception that a work con-

sists only of form."10 Content or expression is essential. Content is the impetus for form.

However, content is impossible without the appropriate forms to hold or represent it. Klee

maintains that "what must be stressed even more at this point [than the misconception that

work consists only of form] is that . . . the profoundest mind, the most beautiful soul, are of

no use to us unless we have the corresponding forms to hand."11

Kandinksky frames content and form in a similar way. Kandinsky describes content and

form as the inner and outer--or internal and external--elements of a work of art. He writes,

"The work of art is an inevitable, inseparable joining together of the internal and external

elements, of the content and the form."12 Content, the inner element, is "the emotion in the

soul of the artist."13 Like Klee, Kandinsksy realizes that content (soul) is not enough. He

continues, "[In order] for the content, which exists first of all 'in abstracto,' to become a work

07.5

Proceedings . 3rd International Space Syntax Symposium Atlanta 2001

of art, the second element--the external [form]--must serve as its embodiment."14 However,

it is always content that leads form: "Complete harmony between 'form' and 'content', where

form = content and content = form, can only exist if it is the content that creates the form."15

Computational design comprises both form and content, but is indifferent to which

takes the lead. Because computation is often used to generate numerous, diverse, and

unpredictable forms, in seemingly mysterious and spontaneous ways, computation some-

times gives the impression that form reigns over all. But as Kandinsky observed "every form

has inner content."16 This is true for forms that are computed as well as for those that are not.

The rules of a shape grammar, for instance, embody content. Expression, meaning, pur-

pose, aesthetics, and so on all go into the creation of shape rules. For example, the Palladian

shape grammar generates villa plans with a compositional element called an enfilade--this is

the continuous line of windows and doors from one facade of a villa to the opposite one.

Enfilade rules are not only about form--the impetus for these rules are climate and site

conditions. Here, it is clearly "content that creates form".

Computational design can handle content, and relationships between form and content,

in other ways. Content can be expressed through form; it can be also be expressed and

described through words, numbers, or symbols-- through poetry, for example. Textual or

symbolic representations of content can be manipulated and generated computationally.

(Recall that the earliest computational systems were textual or symbolic.) Computations on

representations of content can be connected or networked to other computations--for ex-

ample, computations on form. These networked computations are often called "parallel

computations." Parallel computations are computations that take place simultaneously.

With parallel computation, shape rules that encode form can be linked to text rules that

encode content. Links between rules can be defined freely: content can drive form, form can

drive content, or the two can operate independently. For example, a parallel grammar has

been developed recently for the Malagueria housing designs of the architect Alvaro Siza. The

parallel grammar generates house designs and simultaneously generates descriptions of the

costs, layouts, and other programmatic features of houses. In this case, content (specified by

a user) drives the form of a house.

Evolutionary or genetic computation can be considered a kind of parallel computation

where form is linked to, and driven by, content. Here, content is specified by objectives called

fitness functions.

3 either calculation or intuition calculation and intuition

These two concepts are always difficult to define. Kandinsky and Klee equate calculation with

conscious processes, thinking, reasoning, logic, and mathematics. They equate intuition with

subconscious processes, inspiration, and the irrational. Are calculation and intuition at odds

then with one another? Not for Klee:

We construct and keep on constructing, yet intuition is a good thing. You can
do a good deal without it, but not everything. Where intuition is combined
with exact research it speeds up the progress of research. Exactitude winged
by intuition is at times best.17

Kandinsky speaks similarly, but in a biological vein:

 Terry Knight: Either/Or And

07.6

. . . the actual making of art has a perpetual goal, the creation of artistic entities,
which resemble organisms. Would it be permissible to create organisms that
lack head or heart? Head or heart, the conscious or the subconscious, calcula-
tion and intuition--what might be thrown overboard?18

Neither, of course. Kandinsky calls instead for "for a balance of creative forces, which may be

divided up under two schematic headings--intuition and calculation"19. He insists on "the

necessary, simultaneous application of intuition and calculation."20, and warns "Woe betide

him who relies solely on mathematics--on reason."21

Where are intuition and calculation in computational design? Are they balanced? The

calculation component is obvious. With a shape grammar, rules apply step by step to add

and subtract shapes in much the same way that numbers are added and subtracted in an

arithmetical calculation. Other kinds of calculation--other kinds of conscious, logical, or

mathematical processes--underlie other kinds of computational design systems.

The role of intuition in computational design is perhaps not as obvious. But computa-

tional design, especially good computational design, is impossible without it. Intuition,

inspiration, and guesswork--all of these play a part in every phase of computational design.

Intuition is critical in designing a computational system. Whatever subconscious processes

go into the making of a great building or work of art, also go into the making of a great

shape grammar. Intuition is critical in using a computational system. Whenever user input

or choice is called for, so is intuition. The user of a shape grammar, for instance, may have to

choose rules to apply and how to apply them. The user of an evolutionary design system

may have to choose or define fitness functions that drive the generation of designs. Intu-

ition is as crucial to these decisions as calculation. Intuition is also critical in selecting from the

output of a computational design system. Whenever multiple design solutions are pre-

sented, the evaluation and choice of solutions require intuition.

Kandinsky tells an instructive story about the role of calculation in art, where calculation

is equated with thinking. The story carries a lesson for computational design as well. Kandinsky

recalls a drawing instructor he had when he was a grammar school boy. The instructor would

often tell his pupils: "Boys, drawing is a difficult thing. It's not like Latin or Greek--here, you

have to think!"22 Much later, as a young man, Kandinsky studied drawing under another,

then famous, art instructor. This teacher required students to know anatomy thoroughly in

order to draw. But the teacher insisted: "woe betide you if you think about anatomy in front

of the easel! When he's working, the artist shouldn't think!"23 Kandinsky concludes: "I have

followed these two suggestions to this day and have remained true to them to the end."24

4 either emergence or predictability emergence and predictability ?

The relationship between emergence and predictability in art was not considered explicitly by

either Kandinsky or Klee. However, notions of emergence and predictability underlie much

of their writings, and are intrinsic to any creative design process. Computation has amplified

these two aspects of design, and brought to the fore questions about their reconcilability.

Emergence is a concept widely associated today with computation. However, the origins

of the concept date back to the 19th century. In 1843, the British philosopher John Stuart

Mill noted a unique property of chemical bonding: he observed that the sum of the prop-

erties of individual chemical components does not produce or predict the effects of actually

combining the components. Mills's work led to the development of a new school of

philosophy called British Emergentism. George Henry Lewes coined the term "emergence"

07.7

Proceedings . 3rd International Space Syntax Symposium Atlanta 2001

in 1875 to describe unpredictable effects or characteristics such as those observed by Mill.25

British Emergentism was most active around the time that Klee and Kandinsky were work-

ing out their new theories of abstract art. Perhaps it is not coincidental then that Kandinsky

chose an analogy from chemistry to explain the emergent properties that arise from the

combination of the basic components of art:

. . . the sounds and characteristics of the component elements [of a compo-
sition] produce in individual instances a sum total of qualities not covered by
the former. Comparble facts are not unknown in other sciences, e.g., chemis-
try: the sum of the component elements when separated is not the same as
the total produced by their combination. In such cases, we are perhaps con-
fronted with an unknown law, whose indistinct features strike us decep-
tively.26

The concept of emergence in vogue in recent years retains the hallmarks of emergence laid out

more than a century ago. In a recent book devoted entirely to the subject, John Holland

writes that emergence "occurs only when the activities of the parts do not simply sum to give

activity of the whole. For emergence, the whole is indeed more than the sum of its parts."27

Frequently given examples, by Holland and many others, of systems that embody emergence

are complex, nonlinear, self-organizing systems ranging from economic systems to ant colo-

nies to board games. Holland's observation that the emergent behavior of such systems

gives the "sense of much coming from little"28 and that "This feature also makes emergence

a mysterious, almost paradoxical, phenomenon"29 recalls Kandinsky's sense of a vague, un-

known law behind emergence.

In keeping with his empiricist views, the 19th century philosopher Lewes hoped that

some day the mysterious, "unseen process" of emergence could be expressed in a mathemati-

cal formula.30 Lewes's belief might be satisfied by today's computational models of emer-

gence. In fact, the new wave of interest in emergence is attributable in part to the work of

mathematicians and computer scientists on computation, and probably more so to the

engineering of fast computers to support computation. Rule-based systems from cellular

automata to shape grammars to genetic algorithms and artificial life can be used to generate

and understand a wide range of emergent behaviors and objects. With some systems,

emergence is hierarchical: simple rules direct local interactions among low-level elements to

generate complex higher-level, global objects or behaviors. With other systems--for example,

shape grammars--emergence is nonhierarchical: emergent objects are those that are not explic-

itly represented or identified in the rules used to generate them. Emergent objects may be

simple, complex, or anything in between.

The seemingly spontaneous emergence of phenomena not explicitly built into rules

makes computational emergence engaging to the beholder, and also very attractive for creative

design. Indeed, computational systems have great potential in design exploration to gener-

ate new, "emergent" designs. These designs range from new but conventional designs that

can be generated more readily with computation than without, to novel and unconventional

designs that are near impossible to create without computation.

Emergence is a natural consequence of computation. Unpredictability, which often goes

hand in hand with emergence, is also a natural consequence of computation. The Turing

machine--one of the earliest and most famous embodiments of computation--is inherently

unpredictable. The Turing machine is a theoretical description of a computing device. It was

defined by the mathematician Alan Turing in the 1930s. A wide range of questions about the

 Terry Knight: Either/Or And

07.8

behaviors and outcomes of Turing machines have been shown to be unanswerable or unde-

cidable. The same is true of any computational system equivalent to a Turing machine, from

cellular automata to shape grammars. Given any shape grammar, for example, there is no

general method for predicting how the rules of the grammar will behave and what they will

generate. Thus, predictability, which is not a consequence of computation, may be at odds

with emergence, which is.

But good design requires both emergence and predictability. A real world design prob-

lem requires design solutions that are new, and that predictably satisfy the constraints and

criteria of the problem (an architectural program, for example). Computation readily gener-

ates new, emergent designs. But because computation is generally unpredictable, designs that

satisfy constraints may be difficult to find or generate.

Unpredictability is made tractable in different ways in different computational systems.

Evolutionary computation and other heuristic search and optimization techniques are typi-

cally implemented on a computer. They use the power and speed of the computer to

repetitively generate and test massive numbers of possibilities until satisfactory solutions are

found. The problem of predictability is sidestepped with the brute force of the computer,

and with the more subtle and careful formulation of criteria to be tested against. Shape

grammars, on the other hand, are often implemented by hand. By-hand computation

requires the subtle and careful formulation of rules that will predictably meet the constraints

of a design problem. While shape grammars in general are unpredictable, useful predictions

are often possible for specific or restricted kinds of shape grammars. However, more re-

stricted grammars are less powerful and less likely to exhibit novel, emergent behaviors.

Finding a balance between emergence and predictability in computational design is a

delicate task.

5 either intelligibility or productivity intelligibility and productivity ?

Here is the last dualism I will consider. It is a dualism not considered by Klee and Kandinsky.

It is unique, perhaps, to computational design. However, it is deeply intertwined with issues

of emergence and predictability. And, it returns, full circle, to issues of analysis and synthesis.

Computation is used both to analyze and interpret existing phenomena, and to invent

and synthesize new phenomena. Intelligibility is a requirement of analysis. In analysis, the

rules of a computational system must be understandable. They must describe in an intelli-

gible way the things they generate. For instance, the logician Emile Post developed produc-

tion systems in the 1940s to understand problems of logic and mathematics. To this end,

the rules of a production system are required to be intelligible--they must describe, intelligi-

bly, solutions to questions. In the 1950s, Chomsky developed generative grammars to

explain the structure of natural languages. The rules of a generative grammar must be

intelligible--they must describe intelligibly how sentences are put together. Stiny and Gips's

shape grammars were also developed with intelligibility in mind. The rules of a shape

grammar are meant to explain the structure of the designs they generate. A long standing

criterion of a well-crafted shape grammar (and of old-fashioned computer programs) has

been the intelligibility of the rules. If the rules are not understandable, then neither are the

designs generated by them.

Computational systems that are geared only toward invention or synthesis have no

obligation to be intelligible. Productivity is the requirement of these systems. They are

obliged to produce correct, appropriate, or novel results for the problem at hand, and to

07.9

Proceedings . 3rd International Space Syntax Symposium Atlanta 2001

produce these results reliably. Evolutionary computation, for example, is oriented toward

productivity. And productivity is made possible only through the speed and power of

current computers.

Daniel Hillis, a pioneer of massively parallel computing, the inventor of the Connection

Machine, and a champion of evolutionary computation, understands well the conflicts be-

tween productivity and intelligibility. In a recent book, he talks about his experiments using

simulated evolution to develop computer programs for sorting numbers. He doesn't know

how his evolved programs work, but he knows that they will reliably produce the kinds of

results he wants. In fact, his evolved programs will produce more trustworthy results than

traditional programs because they have been tested over many thousands of evolutionary

iterations. Hillis writes:

One of the interesting things about the sorting programs that evolved in
my experiment is that I do not understand how they work. I have
carefully examined their instruction sequences, but I do notunderstand
them: I have no simpler explanation of how the programs work than the
instruction sequences themselves. It may be that the programs are not
understandable--that there is no way to break the operation of the
program into a hierarchy of understandable parts.31

Hillis further connects intelligibility to predictability. Evolutionary computation effectively

dodges the problem of predictability, but with negative consequences for intelligibility, for

the "why" of a design:

Simulated evolution is a good way to create novel structures, but it is an
inefficient way to tune an existing design. Its weaknesses as well as its
strengths stem from evolution's inherent blindness to the "Why" of a
design . . . evolution chooses variations blindly, without taking into account
how the changes will affect the outcome.32

Margaret Boden, a commentator on artificial intelligence and artificial life, has made similar

observations about evolutionary computation. She ties intelligibility to predictability, and

also uses it to characterize emergence. She distinguishes between "intelligible emergence" and

"unintelligible emergence". Emergence is intelligible if it can be understood by examining

the rules that produce it. It is unintelligible if it cannot be understood or predicted, even with

access to the rules and to the computation. Boden talks about the work of the digital artist,

Karl Sims, who generates images of artificial creatures using genetic algorithms:

Sims's computer-generated images give us an example of the latter [unin-
telligible emergence]. . . Sims himself cannot always explain the
changes he sees appearing on the screen before him, even though he can
access the mini-program responsible for any image he cares to investigate . .
. Often he cannot even 'genetically engineer' the underlying LISP
expression so as to get a particular visual effect. To be sure, this is
partly because his system makes several changes simultaneously, withevery
new generation. If he were to restrict it to making only one change, and
studied the results systematically, he could work out just what was
happening. But when several changes are made in parallel, it is
often impossible to understand the generation of the image . . . 33

As Boden suggests, intelligibility is partly a function of the complexity of a program and the

speed of its implementation. Computation done by hand--slow, old-fashioned computa-

tion--requires intelligibility. Appropriate and trustworthy results can only be generated by

 Terry Knight: Either/Or And

07.10

understanding the rules. Not so for high-speed computation on a computer. But if we are

concerned only with synthesis, invention, or results, is intelligibility all that important? And

is intelligibility fundamentally incompatible with productivity in much of current computa-

tional design anyway?

Answers to these questions may come with more practical experience using computation

for designing, and with the ongoing development of computational systems and theories to

support them. The complexity of conflicting issues and agendas, either apparent or real, in

computational design go well beyond the five dualisms I have considered here. But perhaps

in considering these issues we can try, in Kandinsky's words, to "desert the petrified atmo-

sphere of 'either-or' for the flexible, living atmosphere of 'and'"34.

Acknowledgment
I would like to thank Sotirios Kotsopoulos, whose inquiries into shape grammars prompted me to

revisit the writings of Klee and Kandinsky.

Notes
1 Lindsay K C and P Vergo (Eds), 1994 Kandinsky: Complete Writings on Art (Da Capo Press) 724
2 Ibid. 852
3 Ibid. 479
4 Spiller J (Ed), 1961 Paul Klee: The Thinking Eye (New York: George Wittenborn) 99
5 Ibid. 99
6 Stiny G, 1994, "Shape rules: closure, continuity, and emergence" Environment and Planning B:

Planning and Design 21 s49-s78
7 Spiller J (Ed), 1973 Paul Klee Notebooks:Volume 2, The Nature of Nature (New York: George

Wittenborn) 269
8 Ibid. 269
9 Spiller, Paul Klee: The Thinking Eye, 17
10 Ibid. 100
11 Ibid. 100
12 Lindsay and Vergo, Kandinsky, 350
13 Ibid. 349
14 Ibid. 349-350
15 Ibid. 482
16 Ibid. 165
17 Spiller, Paul Klee: The Thinking Eye, 69
18 Lindsay and Vergo, Kandinsky, 485
19 Ibid. 535
20 Ibid. 601n.
21 Ibid. 758
22 Ibid. 735
23 Ibid. 736
24 Ibid. 736
25 Lewes G H, 1875 Problems of Life and Mind (Boston: Osgood and Company), 368
26 Lindsay and Vergo, Kandinsky, 592
27 Holland J H, 1998 Emergence: From Chaos to Order (Cambridge, MA: Perseus Books) 14
28 Ibid. 2
29 Ibid. 2
30 Lewes, Problems, 370
31 Hillis D W, 1998 The Pattern on the Stone (New York NY: Basic Books) 146-147
32 Ibid. 148
33 Boden M A (Ed), 1996 The Philosophy of Artificial Life (Oxford UK: Oxford University Press)

103
34 Lindsay and Vergo, Kandinsky, 724

