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Abstract
The section d�or has held an all too revered a place in proportional design. Egyptian monu-
ments, Greek temples and all manner of architectural works since have been �shown� to
follow the inexorable geometry of the �divine� proportion. This paper does not review the
history of  the number commonly referred to in design circles as F, phi. That has been done
well elsewhere.1 Instead it takes two examples in which the section d�or is said to have deter-
mined the design: Leonardo da Vinci�s famous Vitruvian man, and the Villa Emo of  Palladio.
In both cases, clearly marked dimensions on the drawings show that the section d�or was
emphatically not used.

Leonardo da Vinci: the Vitruvian man

Leonardo da Vinci pictorially interprets this passage in Vitruvius 3.1.3:2

... the center and midpoint of  the human body is, naturally, the navel. For if
a person is imagined lying back with outstretched arms and feet within a circle
whose center is the navel, the fingers and toes will trace the circumference of
this circle as they move about. But to what ever extent a circular scheme may be
present in the body, a square design may also be discerned there. For if  we
measure from the soles of the feet to the crown of the head, and this mea-
surement is compared with that of outstretched hands, one discovers that
this breadth equals the height just as in areas that have been squared off by
use of the set square.

With a familiar graphic construction, Robert Lawlor3 in Sacred Geometry overlays a reproduc-

tion of the drawing, Figure 1. In a book in which the section d�or takes pride of place in nature

and in design, it comes as no surprise to find that Lawlor demonstrates that Leonardo�s

Vitruvian figure conforms to this rule of �universal harmony�. Indeed, addressing the pruri-

ent adolescent in many of us, Lawlor writes:

The body is divided exactly in half by the sex organs. This denotes the rela-
tionship of  sexuality with the dualizing function, the division into two. At
birth, however, it is the navel that divides the child exactly in half, and in the
course of maturation the navel moves to the point of the phi division. Thus
the position of the navel through human growth is related to the idea of
movement from the dualized, sexualized stance in nature to that of a propor-
tional relation to Unity through the asymmetrical, dynamic power of F.
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The drawing appears to be convincing. But I am sceptical of  its relevance. It is true that

Luca Pacioli4 used Leonardo�s Latin alphabet and his drawings of  polyhedra in De divina

proportione, and that the first section of that book identified the extreme and mean ratio �

the section d�or � with traits of the Christian godhead. At no point, however, does Pacioli

give this ratio the unique aesthetic status it was eventually to acquire in and from the 19th

century. In the second section, Pacioli summarizes his

understanding of theVitruvian code, without a whis-

per on the extreme and mean ratio this Franciscan friar

has so loudly promoted on theological grounds in the

first section. Unless there is an occult play on the theme

of  man and divinity, which is certainly a possibility, it

seems to me unlikely that Leonardo would have em-

ployed this ratio in theVitruvian context of his draw-

ing given Pacioli�s aesthetic disinterest in such a rela-

tionship.

Is there an alternative? Leonardo describes the

Vitruvian man in two passages. First, the general dis-

position:5

If you open your legs so that you lower your
head by one-fourteenth of your height, and
open and raise your arms so that with your
longest fingers you touch the level of the top
of your head, you should know that the central
point between the extremities of the out-
stretched limbs [feet and hands] will be the na-
vel. and the space which is described by the legs
makes an equilateral triangle.

In the other passage, Leonardo explains his choice

of measurements for the scale he draws at the base of

the figure:

Vitruvius, the architect, has it in his work on
architecture that the measurements of man are
arranged by nature in the following manner:
four fingers make one palm and four palms
make one foot; six palms make one cubit; four
cubits make a man, anf four cubits make one
pace; twenty-four palms make a man; and these
measurements are those of his buildings.

The system of Roman measurements is shown in

Figure 2.

The adjustment of  the man�s height by one four-

teenth when his legs are parted is another matter. First

it is necessary to examine the relationship of the square

to the circle. Using Leonardo�s own scale it is evident

that the square has sides of length 24 palms. With the

exact same scale, the diameter of the circle is found to

be 29 palms, Figure 3.

Figure 1. Robert

Lawlor�s section d�or

analysis of

Leonardo�s Vitruvian

man.

Figure 2. Leonardo�s measurements.
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Consider Table 1 where successive rational convergents

(approximations) to the ratio Ö2:1 are given:6

Ö2:1   1:1     2:1     3:2     4:3     7:5     10:7     17:12     24:17
41:29   ...

The earliest values are poor, at the very start just plain

bad, but they improve rapidly. The values 7 : 5 and 10 : 7

were commonly used by the Roman builders in setting out

rooms. Alberti7 does not consider 7 : 5 to be a particularly

good value. The better value 17 : 12 is explicitly illustrated in

Cesariano�s 1521 edition of  Vitruvius, after, of  course,

Leonardo�s death. Yet Cesariano is surely reporting on a well

known estimate. It appears that Leonardo learned about

roots from Luca Pacioli: this most likely meant knowing

about algorithms to extract rational convergents for roots.

David Fowler8 has covered this classical tradition: a tradition

which persists through the middle ages, into the renaissance of  Leonardo�s time and beyond.

The numbers 24 and 29 appear in the sequence in Table 1 and alert us to the possibility

that, in his Vitruvian man, Leonardo is toying with geometry associated with shapes related

to the right isosceles triangle (half-square cut along the diameter), Figure 4a.

Apart from the square itself, one such figure is the regular octagon which Leonardo was

fond of using � almost to exclusion �particularly in his many proposals for centralized

churches. This is certainly the polygon that Leonardo used as the underlying geometry of his

Vitruvian illustration. It appears that Leonardo employed the rational convergent 17 : 12 for

the diameter and sides of  a square, Figure 4b.

Consider a square of 24 palms, both the height of a man and his span with arms

outstretched. A regular octagon whose sides are half those of this square, 12 palms, circum-

scribes a circle of diameter 29 palms, Figure 5.

This firmly establishes the relationship between the square and the circle in Leonardo�s con-

struction. With respect to the figure when the legs are parted, it appears that Leonardo

usesthe Milan cathedral formula9 for the height to width of an equilateral triangle, that is,

with an altitude of 7, the side lengths of the triangle are each very close to 8. The formula may

Figure 3. Leonardo�s

Vitruvian man with

his own scale in

palms superimposed.

Figure  4a above. The

diameter of the square

to the side is in the

ratio 2 : 1.

Figure 4b below. A

square marked with

rational values for the

side, diameter and ra-

dius.

Figure 5. left. A circle

of diameter 29 is in-

scribed in a regular

octagon of side lengths

12.
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be tested by Pythagoras� theorem. The half equilateral tri-

angle is a right-angled scalene with exact dimensions of 1,

Ö3, 2. The rational approximation used at Milan gives a

triangle with dimensions 4, 7, 8. Pythagoras� theorem pro-

vides the values:

42 + 72 = 16 + 49 = 65,
82 = 64.

It can be seen that the expected equality is close, Figure 6.

Locating the equilateral triangle in the circle is accomplished by inscribing a regular hexa-

gon, Figure 7.

When the 24 x 24 square is added to the figure so that

its base is tangential to the bottom of the circle, the extent

of the standing man, feet together and arms horizontally

outstretched, is defined. The center of the square is the

penis. The apex of the equilateral triangle locates the navel.

It will be seen that the altitude of the equilateral triangle is

close to the half-side of the square. If the Milan Cathedral

8 : 7 ratio is assumed for the triangle, the radius of the

circle will be 8 units and the distance between where the

feet were when they were together to where they are when

apart is 8 - 7 = 1 unit. The original height of the man in

these units is 7 + 7 = 14. Hence, the shortening by 1/14th

to which Leonardo refers, Figure 8.

To impose the doctrine of  the section d�or on Leonardo�s

defining icon of humanistic endeavour is truly an outrage.

Historically, it is anachronistic. Such a doctrine did not

figure prominently in Leonardo�s, nor his contemporar-

ies, aesthetic criteria. If it ever did, it was most probably

more by accident than design. What did fascinate the times

were the regular figures in two and three dimensions, fig-

ures exhibiting strong central symmetry. Wittkower10 dis-

cusses religio-cultural reasons for this enthusiasm for cen-

trality in architecture. The mathematical interest should

not be ignored. From 1496, when he met Luca Pacioli,

Leonardo spent much time dabbling with �rationally� in-

tractable geometrical problems such as the quadrature of

the circle and the doubling of the cube � all to no avail

mathematically ... but the doodles!. Noting his total absorption in mathematical matters

during this period, an observer in 1501, writes of  Leonardo: �the sight of  a brush puts him

out of temper�.11

It is known that Leonardo was familiar with the 1512 printed edition of  Alberti�s Libri de

re aedificatoria decem ... (Paris). This would be seven years before his death. He may have had

knowledge of  Alberti�s work from the earlier 1486 edition (Florence). In any event, it is

intruiging to read in Book 7 the passage concerning many-sided architectural plans.12 Having

written that �Nature delights primarily in the circle�, Alberti continues:

Figure 6. The Milan

Cathedral rational

approximation for an

equilateral triangle.

Figure 7. above. An

equilateral triangle

inscribed in the circle

Figure 8. below.

Diagram showing the

reduction in height by

1/14th when the legs

are parted to align

with the sides of of

an equilateral

triangle concurrent

with the navel.
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... the ancients would use six, eight, or even ten
angles. The corners of all such plans must be cir-
cumscribed by a circle. Furthermore, they may be
plotted exactly using the circle. For half the diam-
eter of the circle will give the length of the sides of
the hexagon. And if you draw a straight line from
the center to bisect each of the sides of the hexa-
gon, it is obvious how to construct the dodeca-
gon. From a dodecagon it is obvious how to de-
rive an octagon, or even a quadrilateral.

The lineaments of  Leonardo�s drawing are strikingly

based on the overlaid geometries of such regular figures.

All of them may be derived from the regular dodecagon

� the octagon, the hexagon, the square and the triangle.

It is as if Leonardo extracts them all from the primary

matrix of the dodecagon, Figure 9.

Leonardo does not here employ the pentagon, nor the decagon, both of which would

have introduced the section d�or. It is hard to find in all his copious works an interest in these

two figures. It indicates that the use of  this unique ratio was in no way a priority for Leonardo.

Instead, he flourished in the abundance of proportional schemes that geometrical configura-

tions generate when variety is favored over uniformity; opposition over sameness.

Palladio�s Villa Emo

In a most thoughtful and persuasive paper13, Rachel Fletcher comes close to convincing that

Palladio may well have made use of  the section d�or, or extreme and mean ratio, in the design

of the Villa Emo at Fanzolo which was probably conceived and built during the decade 1555-

1565. It is early in this period, 1556, that I dieci libri dell�archittetura di M. Vitruvio Pollionis

traduitti et commentati ... by Daniele Barbaro was published and the collaboration of Palladio

acknowledged14. In the later Latin edition of 156715, there are geometrical diagrams of the

equilateral triangle, square and hexagon which evoke ratios involving Ö2 and Ö3 , but there are

no specific drawings of pentagons, or decagons, which might explicitly alert the perceptive

reader to the extreme and mean proportion,

Architectural examples employing Ö2 and Ö3 include the Roman theater and Greek the-

ater, respectively. The most telling use of  the pentagon occurs as a minor detail in two

inventioni for architraves surrounding doors and windows16 � but more of this later. How

would Barbaro � and perhaps his illustrator, Palladio � have constructed a pentagon or

decagon? In the mid-fifteenth century, Alberti had described in words an exact construction

for the decagon17. Albrecht Duerer, 1525, illustrates two distinct constructions for the penta-

gon, one according to geometric theory, and another traditionally used by masons and crafts-

men which is only approximate18. By the 1540s, Serlio shows Duerer�s exact construction19;

yet as late as 1569, Barbaro shows only Duerer�s approximate construction20. Whereas the

exact construction leads to the extreme and mean ratio, the approximate construction does

not. Someone seriously aware of the relationship of the extreme and mean ratio to the

pentagon, or decagon, would surely use the exact method, especially if that relationship was

seen to have aesthetic value. But there really is no evidence that any of these authors had

strong commitments to the extreme and mean ratio for aesthetic purposes.

Figure 9. The nesting

of regular polyhedra

in a circle
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It is Kepler in the seventeenth century who connects the extreme and mean ratio with

natural phenomena such as planetary motion, and makes the discovery that successive pairs

in the sequence 1, 2, 3, 5, 8, 13, .... converge on the value of the extreme and mean ratio �

without in anyway relating this to the sequence which occurs in a problem solved by Fibonacci

in the thirteenth century and had laid dormant until its rediscovery in the nineteenth21. The

extreme and mean ratio emerges, born again as the section d�or, as a key to aesthetic measure

only in the nineteenth and twentieth centuries. Over the last century and a half, its aesthetic

use has been sanctioned, even sanctified, by casting its diagrammatic aura over the analysis of

past works in the arts from architecture, to painting and sculpture, to music and poetry; and

by observing its pervasive presence in nature, in growth patterns, or phyllotaxis22. None of

this will be found in renaissance commentaries. None.

It is true that the Fibonacci ratios 1 : 1, 2 : 1, 3: 2, 5 : 3, 8 : 5 , 13 : 8 will be found in Palladio�s

works, but they represent less than six per cent of all ninety ratios to be found in Book II , nor

do they occur as a coherent set in any, but one, work23. Except for 13 : 8, the remaining five

ratios have a musical interpretation within the contemporary senario of the music theorist

Gioseffo Zarlino24. However, the ratio 13 : 8 produces an interval which is very much out of

tune with the modern major and minor scales then beginning to displace the traditional

modes , while f : 1 itself is yet more cacophonic and utterly disharmonious in musical theory

and to the ears.

Palladio does use ratios which better converge towards the finitely unreachable extreme

and mean ratio. These lie between the underestimate 8 : 5 [1.6] and the overestimate 5 :

3[1.66667]. The ratio 13 : 8 [1.625] is among these, but 21 : 13 [1.615385] is not one of them.

In his reconstruction of a private house for the ancient Romans25, the atrium is shown with

dimensions 831/
3
 by 50 piedes. The additional one third of a piede neatly turns this into the

ratio 5 : 3. Of  this ratio, Palladio writes: �I like very much those rooms which are two-thirds

longer than their breadth�26.

There is ample evidence that Palladio employed ratios related to regular planar figures

such as those Leonardo da Vinci used27. To arrive at such proportional design, it seems that

Palladio would have made use of rational estimates for square roots of non-square num-

bers, such as 2, 3 and 5. There were several techniques for computing the numerical values at

the time, but once such computations were made it would probably have been convenient to

look them up in tables, or simply to remember at least the most commonly used values.

Typical values in the generative process which converge on these square root are given in Table

228. Note that the ratio 5 : 3 may stand for Ö3 : 1, and is not to be read uniquely as an early term

in a Fibonacci approximation to f : 1.

Table 2. Rational

convergents to the

square roots of 2, 3

and 5. Ratios shown

in bold occur in

Palladio�s Book II.

The early values to

the left are embry-

onic, those to the

right are more

mature.
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Earlier, the discussion of pentagonal proportional design in two inventioni by Palladio

was postponed. With Table 2 at hand, it is now possible to proceed. The designs are for door

and window architraves. Palladio illustrates how to set out the gola diritta, an S-shaped

moulding in the cornice29. Palladio describes the construction of  this curve: �To make it well

and gracefully, draw a straight line AB and divide it into two equal parts at the point C; divide

one of these halves into seven parts and make six of these coincide at point D; then one

forms two triangles AEC and CBF; and at the points E and F fix the compass and draw the

segments of a circle AC and CN which form the gola�, Figure 10.

This construction is no whim. It derives from an arithmetical interpretation of Euclid,

Proposition 10, Book XIII30. Unquestionably to be counted among the most aesthetically

pleasing of all the propositions in The Elements, Proposition 10 reads: �If an equilateral

pentagon be inscribed in a circle, the square on the side of the pentagon is equal to the squares

on the side of the hexagon and on that of the decagon inscribed in the same circle�, Figure 11.

Let the side of the pentagon be s, and the radius of the common circle be r, Figure 12.

The side of the hexagon is equal to the radius, and the side of the decagon is in propor-

tion to the radius as 1 : f. In modern terms, Proposition 10 may be expressed algebraically as:

whence, the side of the pentagon

Using the defining relation

and the value

the expression for the side can be reduced to

Computationally, this is what Euclid�s proposition implies; and, without the advantages

of modern algebraic notation, this is very much the kind of procedure that Piero della

Francesca would have had to follow in his fifteenth century programme for the arithmeticization

of  Euclidean geometry. How would such an expression, albeit in different notation, be

evaluated? It would be necessary to substitute a rational value for Ö5. But what value? It

would be convenient, if the remaining square root after the substitution was of a square, or

near-square, number. Scanning through Table 2, the values 9/4 and 20/9 show promise since

the numerators are square numbers and their roots can be brought outside the main square

root sign. The value 9/4 leads to

Figure 10. Above.

Palladio�s construction

for setting out the gola

diritta of a cornice.

Figure 11. Below.

Euclid�s proposition

which states that the

square on the side of

an equilateral

pentagon is equal to

the sum of the

squares on the sides

of the hexagon and

the decagon.

Figure 12. Equilateral

pentagon.
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but 22 is not a near-square number, whereas the value 20/9 gives

and Ö50 is very close to Ö49 = 7. Thus, a good rational solution , shown in Figure 13, is:

This is precisely the ratio that Palladio employs in his

triangles AEC and CBE. Now, each is seen to be the isos-

celes triangle on the side of an equilateral pentagon with

apex at the center of the circumscribing circle. Referring to

Table 2, it will be found that an equilateral pentagon of

side 3.7 = 21, will have a chord length of 34, and propor-

tionately will have a radius of 3.6 = 18. This example, is

typical of the wit required to find integral values to fit the

numerical irrationality of most geometrical objects, espe-

cially before the arrival of decimal notation in the seven-

teenth century, Figure 14.

Rachel Fletcher takes drawings of Villa Emo and over-

lays these with regulating lines. In doing so she follows a

time honored analytical methodology. Her overlays show

very clearly that the proportional design of the Villa may

have been generated by applying the golden ratio consis-

tently throughout. There is no doubt concerning the hy-

pothesis: �Golden Mean proportions appear in the Villa

Emo, whose measured drawings suggest that Palladio

employed mathematical proportions through a consis-

tent application of geometric techniques�31, Figure 15.

Essentially, the analysis plays on the well-known prop-

erty that when either a square is added to the short side of

a golden rectangle, or a square is deducted from a golden

rectangle, the new issue is itself a golden rectangle32, Figure

16.�

Figure 13. Natural

numbers assigned to

the radius and side of

the equilateral

pentagon.

Figure 14. Natural

numbers assigned to

the radius, chord and

side of the equilat-

eral pentagon.

Figure 15.  Below.

Villa Emo overlaid

with the section d�or

hypothesis (from

Rachel Fletcher,

2000)

Figure 17. The

construction of an

extreme and mean

rectangle from a

square.

� Editors' note: Figure 16 missing from original material.
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The golden rectangle itself may be generated from the square by strik-

ing a circular arc from the center of a side through an opposite corner,

Figure 17:

Following this method, the composition of the Villa Emo is gener-

ated from an initial square, Figure 18.

Figure 18.  The

generation of the

extreme and mean

ratio (EMR) scheme

for Villa Emo.

1. a square;

2. add a square to

make a double

square;

3. strike a circle to

circumscribe the

double square;

4. draw the diameter

and extend the double

square into a

rectangle touching

the circle;

5. draw two squares

to produce two

smaller EMR

rectangles;

6. complete the EMR

rectangle between

the two squares;

7. subtract a square

from the left side of

this rectangle;

8. subtract another

square from the right

side;

9. complete the small

EMR rectangle in the

center of the scheme.

10. outline of Villa

Emo related to the

EMR scheme.

Figure 19. Detail of

Palladio�s woodcut of

Villa Emo.



Lionel March: Exit d'or

08.10

The method replicates the golden proportional scheme with which Rachel Fletcher cloaks

Villa Emo. How well does this cloak fit? Visually, it looks fine, but suppose a check is made

with the dimensions that Palladio shows on his own woodcut of the project , Figure 19?

A simple model which compares Rachel Fletcher�s analysis with Palladio�s declared di-

mensions can be established with two unknowns: x the wall thickness, and y the expected

value of f, the section d�or, Figure 20.�

If the wall thickness is an unknown x, and an as yet undetermined continuous propor-

tion is assumed for the design 1 : y :: y : y2, then the proportion

(59 + 4x) : (55 + 4x) :: y (y + 2) : (1 + y + y2)

must hold. This requires that the equation

(59 + 4x) (1+ y + y2) = y (y + 2) (55 + 4x)

be true. The equation reduces to the parabola

59 + 4x - 51y - 4xy + 4y2 = 0 .

Set x = 1, that is, assume a unit wall thickness. The equation then becomes

63 - 55y + 4y2 = 0.

The solutions to this are y = 1.2611... and 12.4889...

These values do not correspond to the hypothesis that y = f, the section d�or. The first

value falls short of the section d�or value of 1.618... by almost 12%. The second solution is too

way out even to contend.

Suppose that the wall thickness is larger. Set x = 2 as a trial. The equation is then

67 - 59y + 4y2 = 0

The solutions to this are y =1.2398..., 13.5102... .

This is worse than the previous result, and since the function is monotonic, any increase

of wall thickness beyond 1 piede will never make things better.

Try the assumption that Palladio has used centerline dimensions. Set x = 0.

59 - 51y + 4y2 = 0

The solutions to this are y =1.28672..., 11.4633... . These are still totally inadequate estimates

for f.

What values of  x, the wall thickness, will deliver the accepted value of  f ? Take the

original equation

59 + 4x - 51y - 4xy + 4y2 = 0

and set y = =1.618... . The equation now reduces to the linear equation

-13.046 - 2.489x  »  0

The solution gives x  » -5.278, or a negative wall thickness of over 5 piedes ! The

computations may be illustrated graphically, Figure 21.

� Editors' note: Figure 20 missing from original material.
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For values nearer f, a detail is shown in Figure 22.

These high school computations make it abundantly clear that the golden proportion

hypothesis simply does not fit Villa Emo. Drawings deceive, where numbers expose. Alter-

native explanations for the proportional design of the Villa Emo are given elsewhere.33

Villa Emo �glisters� among Palladio�s works., but it is not cloaked in the gold of  the

section d�or. If  the cloak doesn�t fit, you must acquit. Palladio is not guilty. But there is plenty

of guilt to spread around. The author of the paper which �saw� the section d�or in Villa Emo

is an innocent adherent of a morphological church that has flourished since the advent of

Zeising�s work in 185434.

Rachel Fletcher has presented a diligent and exemplary study of its kind. Her misfortune,

in casting a cloak of  golden proportion over the Villa Emo, is that, unlike the quintessential

studies of, say, M Borissavlievitch (1952)35, or R A Schwaller de Lubicz (1949)36, her architect,

Palladio, has given the actual measurements. In other studies, and in the absence of  the

architect�s specification, the investigator is at liberty to choose where to take measurements

and with what precision.: �With a little precision in taking measurements, it [the section d�or] is

easily found�37. But such a cloak can never be checked.

What is surprising is that a visually gratifying result is so very wrong when tested by the

numbers. It suggests that there is enormous opportunity for visual error in the search for the

golden �whatever�, an error that computation exposes ruthlessly. Perhaps, the most alarming

consequence of obedience to this morphological faith is that the extraordinary inventiveness,

creativity, wit and playfulness of  homo faber is analyzed into some ideal, universal system, post

facto38. What is this overwhelming desire among some to trade Freedom for Necessity? The

obsession with the section d�or would be like musicians being fixed solely on the harmony of

the common chord, ensuring that everything in their compositions was governed by its

limiting proportion.

Palladio had no system of proportion. He was a mannerist. Rules were there to be

challenged, to be transformed, to surprise in their unexpected application, or unforeseen

consequence. In the process of design, as the dimensions of a work gather around the

physical and geometric possibilities and constraints, the designer discerns familiar patterns

and potential interpretations. For a humanist during the renaissance, these might include

Plato�s Timaean myth, the classical orders of  number taxonomy, Euclidean geometry, music

theory, cosmology, or just plain, practical expediency. It can be assumed that Palladio�s work

is executed in a polysemic language, foreign to modern eyes: enrichingly ambiguous, despite

its enticing presentational lucidity.

Look. Palladio cannot be perceived through over-the-counter prescription glasses.

EXIT D�OR?

Figure 22. Right.

Close up view of

graph of f (y) = 0 for

values of y from 1.2

to 1.7.

Figure 21. Left. Graph

showing the

parabolic curves of f

(y) = 0 for five values

of x.
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