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Abstract
I investigate the relation between floor plate shapes and systems of circulation from a con-
figurational standpoint. I analyze spatial complexes with modular representations that take
into account the difference between their occupation and circulation parts. The three-layered
analysis shows the existence of certain regions of shapes from which the rest of complexes
are in linear proximity. These points serve as keys for laying out the most integrating circula-
tion system possible. Two proposed measures for describing shapes from this stance indicate
the potential of shapes to generate integrating circulation patterns.

1 Introduction

Many design decisions, especially in the programming and schematic stages, concern the

relation between parts of the building that are about movement and connection, and parts

of static or occupation activities. Regardless the size of the building, corridors or spaces that

act primarily for movement are instrumental in terms of influencing the intelligibility of the

whole building by making remote parts accessible through visual and permeable connec-

tions. Often based on intuition, design choices bear a substantial concern with the relation of

corridors with the rest of the spaces. The aim of this work is to provide an analytical descrip-

tion of this relation which will concern both understanding and possible applications into

design procedures. I address the issue of fitting corridors, or else a circulation system, into the

shape of a floor plate. What is the most intelligible circulation a shape can generate? Where

does this system have to be inserted in order to capture the best a shape can offer? How can

we describe shapes in order to see their potential of generating certain circulation systems?

What are the design implications of modifying floor plate shapes for the outcome of the

internal corridors? I depart from an existing �space syntax� methodological platform to offer

an approach that will tie to the peculiar nature of complexes of corridors and non-circulation

spaces.

2 Defining the complex: relationship between 1D and 2D aspects of spatial layout

I define circulation system as the main system of  corridors, in a building. This includes corri-

dors that are clearly separated from other rooms, and major open spaces that have a clear

circulation purpose. Circulation spaces inside rooms or between partitions in open plan

buildings will not be included in this category. Despite considering the real dimensions of  the

circulation system, the focus will be given to the linear dimension of the elongated system

neglecting the width. I define floor plate as the overall footprint of the floor in consideration.
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Its boundary corresponds to the outer edge of  the envelope of  the building. Atria, court-

yards and openings of such nature will be considered as holes in the floor plate. For the

analysis of floor plate, its shape in a two-dimensional respect will be the focus of investiga-

tion. Further, I define the non-circulation spaces such as rooms, as occupation spaces. They are

the result of subtracting the circulation spaces from the entirety of the floor plate.

It would be beneficial to address the main question of this study from a platform that

analyzes both aspects of  shapes and circulation simultaneously. This would require finding a

common ground for analyzing two-dimensional and one-dimensional elements while pre-

serving their relational effect on the complex. I approach the problem by utilizing a model of

analysis where both shapes and circulation systems are fragmented into small modular ele-

ments. Representing shapes with constant metric modules is the only way we can capture

their configuration. I will define the methodological focus of this work alongside the research

on unitized elements that was first introduced in architectural discourse by March and

Steadman (1971), Steadman (1983), and later developed further by Hillier (1996).

3 Hillier�s model: unconnected corridors of modular elements

In the chapter Is Architecture an Ars Combinatoria? (Hillier 1996), the author analyzes the effect

of adding partitions in various positions in order to study their effect on the overall distribu-

tion of integration. The experimentation has constituted rectangular shapes partitioned into

a number of elementary units according to a rectangular grid by regarding permeability con-

nections among them. In the model, each cell has been assigned its value of total depth counts

which shows the sum of graph distances to all other cells. The total depth of the complex is

calculated by summing up total depth counts of all cells in the complex.

The local-to-global effects of adding partitions or openings in a permeability complex have

been thought of as design principles from which we can forecast the global effects. Four such

principles have been summarized.

�...the principle of centrality: more centrally placed bars create more depth gain
than peripherally placed bars; the principle of extension: the more extended the
system by which we define centrality (i.e. the length of lines orthogonal to the
bar) then the greater the depth gain from the bar; the principle of contiguity:
contiguous bars create more depth gain than no-contiguous bars or blocks;
and the principle of linearity: linearly arranged contiguous bars create more
depth gain than coiled bars� (ibid.: 299).

Of particular interest to this paper is another experiment that is the reverse of the one

discussed above. Here, openings or large spaces are introduced instead of partitions. Their

effect is to reduce depth rather than increase it. It has been shown that the same principles are

valid, if the idea of depth loss is substituted for the idea of depth gain. Therefore, more

central openings create more depth loss than peripheral ones; the longer the openings, the

larger the depth loss; openings that are contiguous result in more depth loss than the ones

that are positioned apart from each other; openings that are placed in a linear way result in a

greater depth loss than the ones that are coiled.

The depth minimizing moves, applied consistently over a floor plate, lead to the creation

of long linear corridors, while the depth maximizing ones lead to broken corridors and

irregular patterns of subdivision. The emergence of corridor like connections among cells
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minimizes the total depth in a system, and is influenced by three principles of extension,

contiguity, and linearity. According to the principle of  centrality, corridors that are positioned

centrally in a floor plate minimize depth more than peripheral ones.

From the perspective of  addressing our questions, Hillier�s model has certain built-in

limitations that result from the issue of  maintaining convexity. In that model, open spaces

have been created by means of merging original cells, figure 1a. However, open spaces are

always kept convex. If we were to think of these spaces as joined to create circulation spaces,

they would quite possibly form non-convex spaces, figure 1b. If  we were to analyze the

system that includes such non-convex circulation space, we would need to break it up into

convex components. At this point the idea of a fixed and discrete convex partitions of

circulation spaces does not appear fully satisfactory. This is due to the fact that alternative

partitions of the same circulation system into convex segments may best represent how well

this system serves to make connections between adjoining areas of  occupation spaces. In a

symmetrical L-shaped circulation space, each of two alternative partitions into two convex

spaces may make the distance between some adjoining cells appear deeper. In figure 1c and

1d, the same circulation system is divided into convex entities in two different ways, hence

resulting in different total depth values of 2912 and 2892. The arguments from Space Is the

Machine have been developed on a model that consist on a series of segmented and scattered

open spaces, in which the issue of dividing a continuous and non-convex system into convex

entities has not been addressed.

4 Linear depth spread: key feature of open spaces

The difficulty of the previous model consists on the fact that a single type of cell has been

used to deal with both unitized regions and with open ones in the complex. After the

mechanical merging of cells into larger entities, the emerged one has the same features with

the ones that created it, i.e. permeability connection to the adjacent ones if a link is provided

between them. I propose an alternative strategy. The underlying units of  space that are part

of circulation will not be allowed to merge into a single pattern of larger convex spaces,

instead, their identity will be preserved. I avoid the approach of  finding plausible convex

break ups of  the circulation system, to suggest a dynamic depth calculation, which is always

unique to certain location.

From the syntactic point of  view, open spaces facilitate the connection of  parts in a

building in such a way that no matter how far in metric terms, a region of space can have the

same depth as another if they belong to a convex spatial arrangement. Thus, two parts of a

spatial complex are in a convex relationship to each other, i.e. they have the same depth, if

there exists an uninterrupted linear sequence of spaces to link them. The key feature of the

units of space that are considered to be part of the same circulation space, is that they have the
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same depth if viewed from a certain location. There is no addition of depth as one moves

along the space. Given this premise, we can think of the relations of these units with each

other as being about spreading the same depth value all over a larger space. In fact, the spread

of constant depth value is the defining feature of the units of space that are primarily about

circulation. They are in contrast to the cells of  occupation, which, like the cells used in Hillier�s

model, are about resistance or metric inertia. Here, units of space that are part of circulation

system will be referred to as circulation cells or c-cells, and the ones that are part of the occupa-

tion part of the complex will be referred as occupation cells or o-cells.

In order to clarify the distinction between a linear part of a circulation space to a turn, I

introduce the concept of linear depth spread. The consequence of some c-cells belonging to the

same convex circulation space is that they share the same depth from a certain reference point.

I define the concept as follows: if the depth is spreading from c-cell A, which is closer to the

reference point; c-cell B is adjacent to A; c-cell C is adjacent to B; and three of them have a

convex relationship to each other, c-cell C gets the same depth value as A. Each time this

condition is not satisfied, like in the case of turns, a depth increase occurs. This is illustrated

from the depth calculations in figures 2e-g. Except the linear depth spread effect, c-cells share the

same qualities with o-cells. Thus, the depth between two adjacent cells increases each time by

one when: 1- a threshold is crossed between an o-cell and c-cells; 2- c-cell and o-cell; 3- two o-cells;

4- two c-cells when linearity is broken. In a few words, c-cells are about acceleration, spreading

depth or else transferring the same depth condition to areas that belong to the same uninter-

rupted convex space in contrast to o-cells, which are about resistance or else depth augmenta-

tion. In real buildings, most corridor systems are organized, at least in certain parts of

buildings, along two major axes in order to facilitate the organization of occupation spaces.

Hence, two orthogonal axes are chosen as guide rulers out of the infinite possible directions

that pass through locations in a shape. Therefore, the linear depth will ignore other possible

linear connections in the complex unlike the isovist integration (Turner 1999). The analysis

will filter all open directions that follow the two main orthogonal axes.

5 Three-layered model: occupation and circulation cells

The new model, similarly to the layered tesselation suggested in the chapter Non-discursive

Technique (Hillier 1996), preserves a logical distinction between the layer that regards metric

properties of  shape, and the one that regards the syntactic ones. The first layer L1, like Hillier�s

model, will represent shape entirely with o-cells that have adjacency relations between them,

figure 2a-d. The second layer L2 will represent shape entirely with the newly proposed c-cells,

figure 2e-h. Further to combining the analysis of two layers together, a third layer L3 is

proposed: one that uses o-cells and c-cells simultaneously. This layer represents occupation

spaces in a complex such as rooms or offices with o-cells, and the circulation ones like corridors

or halls with c-cells, figure 2j-n.

As part of an ongoing project, a Java applet is designed to enable drawing o-cells and c-cells

in different module sizes and calculating several measures of complexes of shapes and

circulation systems.1 The sign (�) will be added to distinguish measures taken in L1, (��) for

measures in L2, and (���) for the measures in L3. For the purpose of this analysis, only

measures of  N-o, N-c, Dep-o, Dep-c, and Loss have been used, and will be described grouped in

two categories:

1 - The applet may be viewed at http://www.prism.gatech.edu/~gt7531b/Qelize/qelize.html
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1- Counting

N-o: the number of o-cells in the complex. If the length of a cell is considered as a metric

unit, N-o also gives the total area covered by o-cells.

N-c: the number of c-cells, and also the area covered by c-cells.

2 - Syntactic Depth

The depth calculation is based on adjacency relations when o-cells are concerned, and on

linear depth spread effect in the case of c-cells. Dep-o represents the sum of the individual depths

of all o-cells. The individual depths are calculated by summing up the depths of all other o-cells

and c-cells from the root o-cell. After calculating the depths for each o-cell the values are assigned

to each one, figure 2a-c. The individual depth of  a o-cell is denoted by dep-o, and Dep-o is given

from the expression:

Ñ= RGHSR'HS ��                                                                                  [1]

Dep-c is calculated by summing up the individual depths of each c-cell to all other cells. The

depth value is assigned to each c-cell, figure 2e-g. If  the individual depth of  a certain c-cell is

denoted by dep-c, Dep-c is expressed:

Ñ= FGHSF'HS ��                                                                                   [2]
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L2 representation in which the shape is mapped entirely with c-cells.
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Loss is defined as the difference between the total depth in the case when the effect of the

corridors has been ignored, i.e. the shape is represented entirely with o-cells, to the total depth

in the actual case of a combined state of o-cells and c-cells. This measure allows quantifying

the depth loss, that is integration gain, effect of introducing the corridors into the system,

figures 2d, 2h, 2n. Loss is calculated:
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By definition, in L1 there are no c-cells hence Dep-c� = 0. Likewise in L2 there are no o-cells, thus

Dep-o�� = 0. Therefore, the total depth of the complex in L1 will be represented always only by

Dep-o�, and the total depth in L2 by only Dep-c��. The total depth for the complex in L3 has

been calculated by summing up the respective depths for the regions covered by o-cells and c-

cells, figures 2j-k. Therefore, for three layers we have:
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6 Metric shape description: first analysis layer of total o-cells

L1 layer of analysis, where all the units have been represented with o-cells, shows how the

universal distance is distributed in a shape where lower values are located in the center, and

higher ones at the periphery. We can think of  the total sum of  universal distances as a way to

describe metric properties of the shape. This would give a robust and general description. The

value of universal distance, which here is calculated with the measure of Dep-o�, is due partly to

the number of o-cells in the complex. It is necessary to propose a way to disregard the actual

size of the units in order to characterize and compare shapes of different sizes.

A shape is represented with 7 o-cells in figure 3a and 28 o-cells in figure 3b in order to see

whether there exists any consistency from one representation to the other. Two regions of  the

shape A and C, which are covered with one o-cell in 3a and four o-cells in 3b, are compared

between each other by summing up the depth values of o-cells. In figure 3a, region A has a

depth of 21, and region C a depth of 13. The sums for regions A and C in figure 3b equal 672

and 464. I compare the ratios between the depth of two regions, which are 672:21=32 for

region A, and 464:13=35.692 for region C. Because of different ratios, we can conclude that by

changing the fineness of the modules, certain regions of the shape are not differentiated

between each other in constant degrees. There is no way we can use the measure of Dep-o� to

characterize a shape in an exact manner. We would tend to think that a finer module size

would show the features of  the shape in more accurate way. Then, the shape is represented

Fig. 3  L1

analysis  a)

representation

with 7 units, b)

representation

with 28 units, c)

regions in

consideration

a b c
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with 63 and 112 o-cells, and the depth values of  regions A, B, C and D are compared with each

other. We can see that the densification of  the units results in greater similarity between ratios

for certain regions. For instance, while the ratios between 28:7 representations for regions A,

B and C have values of 1, 0.897 and 1.03, for 112:63 ones they come much closer to each other

at 1.001, 0.99 and 1.001, therefore giving a consistent differentiation between regions of

shape. Thus, despite the differentiation between regions, each densification of the grid gives

better approximation. An empirical modification seems to give promising results. I call the

modified measure compactness as its captures this property of the shape:

����


�

R1

R'HS
VFRPSDFWQHV =                                                                         [5]

The modified value practically does not change at all for higher number of units. For instance,

for the shape analyzed with 7, 28, 63 and 112 units, the modified Dep-o� changes from 0.846

to 0.8995 to 0.896 to 0.896.

I investigate how the modified measure of Dep-o� changes form one shape to another. A

sample of 8 shapes has been analyzed entirely with o-cells, and the values of compactness are

shown below each one, figure 5. The case 5g has the highest value at 1.38, followed by 5a at

1.028, which reinforces the fact that these two shapes are the most elongated ones in the

sample. The compact shape 5f is positioned in the lowest end with compactness at 0.685. By

taking out the effect of the number of units in the shape, it is possible to express the intrinsic

property of the shape in regard to minimizing the universal distance.

7 Linear convex shape description: second analysis layer of total c-cells

When the issue of fitting circulation systems into floor plates is raised, the distribution of

universal distances offers little help. In order to grasp the spatial properties of  floor plates

rather than the metric ones, we need to treat the relations between units in a way that reflects

the features of spatial configuration of the shape. The linear depth spread effect is fundamental

in regard to capturing the structure of relations between regions of space since it is the key

condition that unites parts of  space into single convex entities. We can analyze the relation of

each unit to all others in the complex by means of representing shapes totally with c-cells.

Figure 4 shows the analysis of the same shape that was analyzed above in L1, now

represented entirely with c-cells in L2. The shape is analyzed entirely with 7 c-cells and with 28

c-cells, and the regions with distinct depths are labelled separately. We can see that, for instance

in figure 4b, c-cells of  region B have depth of  8 because there are 8 c-cells one linear step away

8x1. Region E c-cells have a depth of  24 because of  regions A, B, and C are not in convex

relationship with E, hence 24=8x1+8x2. The value of Dep-c�� has a built-in component of

the number of c-cells. The effect is twofold: first because the individual total depth reflects

how many c-cells are in a certain depth from it, and second because of how many c-cells add

Fig. 4  L2

analysis  a)

representation

with 7 units, b)

representation

with 28 units, c)

regions in

consideration

a b c
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Fig. 5  Analyzing shapes of 32

units in two layers  left) L1

analysis showing values of

compactness,  right) L2 analysis

showing values of concavity

a) 1.028

b) 0.862

c) 0.762 d) 0.929

e) 0.752 f) 0.685

g) 1.38 h) 0.76

k) 0.00

m) 0.313

n) 0.383 p) 0.828

q) 0.563 r) 0.00

s) 1.475 t) 0.816
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their individual depth in the overall measure. Thus, Dep-c�� has to be modified by taking out

the effect of  c-cells twice, thus dividing it by N-c in the power of  two. The modified measure

will be referred to as concavity of the shape and will be calculated from the formula:

��



�

F1

F'HS
FRQFDYLW\ =                                                                              [6]

We can see that the value of  concavity for this particular shape remains the same at 0.653

regardless of the modular grid. By investigating the examples in figure 5, we can see that

shapes that have no wings, i.e. that are entirely convex such as 5k and 5r have a concavity equal

to zero. As the shape is compound of  more parts that are not aligned, the concavity increases

further. Comparing one shape to another from the sample, we can see that as we add more

wings, or else as the number of turns increases, more differentiated regions are created. Of

special interest is the presence of distinct and separate areas with low depth values. In contrast

to the first layer of analysis with o-cells where the integrated core constitutes a single entity that

lies around the gravity center, here the integrated areas are disjoint from each other, and are

scattered in the shape corresponding to the junctions of the wings. These regions will be

referred to as low spots because of the low depth and their position in the shape. The junctions

from where all the regions and wings in the shape are in linear access have a depth equal to

zero, figure 5k, 5m, 5n, 5r. The depth value of  a region increases as more areas in the shape fall

in a linear shadow from it.

8 Combined shape description: third analysis layer of o-cells and c-cells

In this layer of analysis different parts of the complex are represented as o-cells and c-cells

depending on the occupation or circulation function they have. Attempts to disregard the

effect of the number of cells in the value of Dep-oc meet a twofold obstacle. First the number

of cells effects the two components Dep-o and Dep-c in different exponents of the order 2 and

2.5. Second, the effect of two components in the summed depth is complicated from the

different percentages and the configurational position of the circulation system in the floor

plate. Thus, we cannot expect to find an exact expression that would discard the effect of size

or number of modules in the shape. This can be easily verified by comparing the depth values

of two corresponding regions of a shape represented with different modules. From an

alternative viewpoint, the combined floor plate of o-cells and c-cells can be thought as an

intermediate state between a shape that is covered entirely with o-cells to a shape where c-cells

have taken over entirely. In other words, layer L3 can be considered as a state between the

extremes of layers L1 and L2 of representation. Thus, I propose to measure the relativized

state of the actual depth, which will be termed RelDep-oc, as the percentage of the actual

combined state to the range between two extremes:
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The minimum depth is achieved when the complex is covered completely by c-cells, i.e. Dep-

oc�� of L2, and the maximum depth results when the whole is covered by o-cells, that is Dep-

oc� of L1. By replacing the componenst from [4]:
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From the definition of Loss from [3]:
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Replacing the components in [7], we express RelDep-oc only with measures in L1 and L2:



�





�


�



�


�


�



�
�



�


�
5H

F'HS/RVVF'HSR'HS

F'HSF'HSR'HS

F'HSR'HS

F'HSRF'HS
O'HS�RF

-++
-+

=
-
-

=          [10]

where Dep-o��� is the depth of o-cells in L3, Dep-c��� is the depth of c-cells in L3, Dep-o� is the

depth of o-cells in L1, Dep-c�� is the depth of c-cells in L2, and Loss��� is the difference of overall

depth values between L1 and L3. Some combined complexes have been analyzed using

different size of modules as shown in figure 6. Despite the fact that the value of RelDep-oc

changes according to fineness of the grid, we can see that for finer modules the changes

become smaller and the measure gets towards a stable state. The value of RelDep-oc, which

ranges between 0 and 1, expresses the percentage of depth loss of the complex when com-

pared to the state without circulation system. For instance, a value of RelDep-oc at 0.341 in the

case 6a shows that the complex becomes 66 percent more integrated as a result of introducing

the circulation system. While keeping the same floor plate shape, I carry out a comparison of

complexes in figures 6a, 6b and 6c, with complexes where the circulation system amounts for

twice the size of the earlier, figure 6d, 6e and 6f. In the first cases, half of the area of the shape

has been covered by c-cells. We can see that the values of  modified depth range between 0.34

and 0.4. Cases in figures 6d, 6e and 6f the area covered by c-cells has dropped into nearly one

fifth of the overall area. Thus, as the circulation systems become shorter or thinner, the

relativised depth becomes higher falling between ranges of 0.5 to 0.63. However, the changes

are by no means proportionate to the reduction of the circulation, and that relation seems to

be complex judging from the shapes of circulation systems. While the ratio between o-cells to

c-cells changes from 1:1 to 4/5: 1/5, the depth values change only a fraction from a mean of

0.35 to a mean of  0.5. I can suggest that the effect of  c-cells in the complex in regard to the

depth minimization is distinctively large. A small number of aligned c-cells in a corridor-like

Fig. 6  Combined

representation of

shapes with

different

circulation

systems

d) RelDep-oc=0.492 e) RelDep-oc=0.632 f) RelDep-oc=0.528

a) RelDep-oc=0.341 b) RelDep-oc=0.398 c) RelDep-oc=0.407
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shape result in major depth loss in the system. The experiment above hints that the system

of c-cells has a major role in the overall configuration of the whole since a small opening

accounts for large depth losses.

The consequences of extending, fattening, of moving circulation openings conform to

four principles that were proposed by Hillier. However, when investigating combined sys-

tems as close approximations of real buildings, it is not clear how to account for all of the

four principles as they operate jointly. For example, it is not clear how to quantify a complex

circulation system with regards to how linear and how central it is at the same time, as these

two trends might work in opposite directions for a certain case. By means of using the

measure of RelDep-oc, it is possible to offer a robust and generic way to capture their overall

configurational properties, and the peculiarities of their embedding into floor plates.

9 Low spots: principles of  fitting circulation systems into floor plates

Here I suggest some ways to answer the questions asked on the beginning. Let us adopt the

criterion of having the best possible integration of the complex as a principle for fitting

circulation into floor plates throughout the following experiments. Circulation systems are

crucial in regard to enforcing their structure onto the rest of the complex, therefore, we have

to aim first at using circulation structures that are integrated themselves, and second to find

ways of embedding them into the shape so as to achieve the best possible integration. In

other words, we must aim at including as many areas of low depth as possible as part of the

circulation system while also aiming at producing the maximum depth loss through the

placement of circulation. Low spots that were detected from all c-cell second layer analysis seem

to provide the clue for solving the problem. As it was discussed in section 7, low spots emerge

at the intersections of wings, or linear parts of the shape. They have a distinct significance in

terms of capturing positions from where a considerable portion of the shape is in linear

access. The lower the value of a certain area, the larger the proportion of the shape that is in

linear access from it. Areas that have a depth equal to zero have linear access to the entire shape.

Low spots primarily capture the extension of linearity in the shape given the linear depth spread

effect where their depth calculation is based. Thus, intuitively, we can think of  them as the

pivotal points through which the circulation systems must pass if the condition of provid-

ing best integration of the overall complex is imposed.

I carry out a number of experiments of fitting circulation systems in several shapes by

means of changing the status of certain cells in a floor plate from o-cells into c-cells. I operate

in L3 of combined cells, being guided from findings that come from two other layers. The

criterion of finding the most integrated solution is equivalent to finding the highest value for

the measure of  Loss. A change is preserved each time a higher Loss value is achieved, reversing

all the moves that have given a lower Loss. First, the shape is analyzed on the first layer entirely

with o-cells, figure 7a. Then, it is analyzed entirely with c-cells in order to see the location of low

spots, figure 7b. I start from the cell that coincides with the most integrated low spot in L2 with

the depth value 51, which is shown with letter A in figure 7c. Because of the principle of

contiguity, the next o-cell to be converted has to be adjacent to A. The move A1 gives a higher

Loss at 723 than A2 with a Loss at 704. So the next step is to try the cells adjacent to A1. It is

obvious from the principle of linearity that A11 would be a better solution than A12, as it is

reinforced from the result of analysis where the Loss for A11 at 1479 is higher than the one of

A12 at 789. A linear corridor in the bottom of  the shape is thus seen emerging. As I extend

it further we see how it connects to the other position that coincides with the low spot B with
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depth value 51. Because of the linear depth spread effect, the first line of circulation not only

connects the first low spots in the rank, but it also covers all other low spots with depth values

next to the lowest. Therefore, connecting first low spots guarantees that we do the best move

to obtain the highest integration for the number of converted cells. After the first line of

circulation system is completed, I continue on adding other c-cells into the shape. Because of

apparent central position, it may seem obvious that the next move would be connecting C

with D, as shown in figure 7d, which gives a Loss at 6392. On the contrary, connecting A to the

next lowest low spot E with depth value in L2 at 76, figure 7e, is the best option with Loss

higher than CD at 7460. This holds true for all next moves. Thus, from here I propose the

first principle of fitting circulation systems into a shape:

Fig. 7  Generat-

ing a circulation

system in a

shape by means

of connecting its

low spots

g)

C - G and H - J connections

c)

A - B connection

e)

A - E connection

h)

K - L connection

f)

B - F connection

d)

C - D trial

a)

L1 analysis showing the depths for each o-cell

b)

L3 analysis showing depth values for each c-cell
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P1 Connecting positions that coincide to low spots, as detected from all c-cells analysis of
a shape, in a hierarchical order starting from the ones with lowest depth, gives the most
integrated solution for the same number of converted cells in a combined complex of o-
cells and c-cells.

Once there are more than two equal values of low spots in the rank, which one of them to

connect first becomes an issue. To illustrate this, I analyze the shape in figure 8, which, due to

a number of symmetries, shows eight low spots with the same depth value of 21 in the second

layer of all c-cells. From principle P1, the first moves would be to connect two low spots with

a five cell long line. Hillier�s principle of  centrality seems to offer the best answer to the

problem. As it is shown from the tentative trials in figures 8c, 8d, 8e and 8f, the best solution

is CE in the latest with a Loss at 1884. The connection CE has the most central position as it

Fig. 8  Generat-

ing a circulation

system in a

shape in which

several low

spots have the

same depth value

a)

L1 analysis showing the depths for each o-cell

e)

C - D trial

g)

C - D trial

c)

A - B trial

h)

C - B connection

d)

B - C trial

f)

C - E connection

b)

L3 analysis showing depth values for each c-cell

j)

E - F connection

k)

C - D connection
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can be seen from the all o-cells analysis in 8a. The centrality of connections is tested from the

sum of depth values of corresponding cells that the connection covers in the first layer of all

o-cells. For instance, connection AB covers a sum of 1546 = 304+310+318+310+304 in L1,

and connection CE covers a sum of  1082 = 216+216+218+216+216. Hillier�s principle of

cenrality for fitting circulation systems can be restated as follows:

P2 When there are more than two alternative low spots with the same depth value in the
shape, the most central connection between them gives the most integrated solution. The
most central connection is guaranteed from covering cells which corresponding ones in the
first layer of all o-cells have the smallest depth sum.

Although global in their significance, low spots represent local clues in terms of showing where

to pass the circulation system in order to achieve the best integration. In contrast, the measure

of concavity offers a robust description of shapes, and is strongly tied with the potential of

introducing a circulation system. As the concavity increases, shapes offer more differentiation

between certain regions, therefore the choice of inserting the circulation system is channeled

through low spots. Concave shapes would determine to a large extent the nature of the

circulation system to be inserted. In contrast, convex shapes, would present no differentia-

tion for fitting a circulation system. While metric concerns are not addressed, they would offer

no obvious choice for a particular circulation, which in turn would be independent from the

shape itself. In such case, fitting the circulation would resemble an inserting that is guided

only from geometrical constrains. At the same time, the hierarchical influence of circulation to

the combined complex would be more significant.

When generating a shape through enhancing an existing circulation system, low spots also

determine the placement of o-cells according to five principles. A further discussion on this

can be seen in (Shpuza 2000).

10 Conclusions

The findings presented in this paper are the result of investigating shapes from the stand-

point of capturing their potential to generate circulation patterns. Once improving integra-

tion was set as an esential criterion, shapes displayed unambiguous properties that dictated

the configuration and geometry of circulation systems which emerged from them. While

only a schematic representation of the built environment, and thereby disregarding metric

properties at certain stages of analysis, there emerged a clearer picture of how configurational

concerns negotiated between the particular nature of circulation and occupation spaces. The

intrinsic feature of circulation systems which facilitates linear movement and increases intelli-

gibility, was used as the foundation for the analysis model. Furthermore, the linear properties

of two-dimensional shapes translated the outer boundaries of the shape into the internal

organization of  the building. Therefore, they offered the key to achieving a unity between two

sides of the �duo� shape and circulation by means of extracting from the shape the potential

to generate a complex of connected segments of circulation.

Analyzing shapes of floor plates employing this particular theoretical base and method-

ology with regard to issues of programming and schematic design in architectural practice,

serves a two-fold strategy. Fitting circulation schemes into floor plates and enhancing a

chosen circulation pattern is the first stage of this process. The second stage is an analytical

understanding of properties of complexes comprising of circulation and shapes, enor-

mously widening the possibility of intuitive choices. A building where schematic design is

conceived in this manner, would achieve a unity, in syntactic terms, between the two-dimen-
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sional floor plate and the one-dimensional system of internal corridors. The proposed

model would regard this complex simultaneously without a hierarchical preference. Its elastic

units would switch state from occupation to circulation and vice versa, opening an avenue of

generating spatial complexes either by the enhancement of preferred circulation schemes, or

by the placement of certain syntactic features as constraints on conventional shape-generating

models.
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