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Abstract

In the behavioural animation field of research, the simulation of populated virtual

cities requires that agents are able to navigate autonomously through their

environment. It is of interest to tend to the most realistic human-like planning and

navigation. In order to do so, we have designed a navigation system for autonomous

agents, which implements theoretical views from the field of human behaviour in

urban environments.

We started from the assumptions that it would be interesting to merge a spatial

cognitive map model with a model of human memory, and that the representation  of

space in the cognitive map would be hierarchical. An interest of our approach is that

the agent navigation can be seen as a planned and reactive navigation loop generated

in real time. We use a semantically and geometrically informed hierarchical

topological graph as a representation of a large environment to be navigated in. Our

model of the cognitive map has a topological and hierarchical graph structure which

partially maps the regions of the environment the agent has explored during the

simulation. This map can be seen as a filter on the environment. It does not contain

geometrical or semantic information about the urban objects encountered, but only

controls the partial access to the database while the agent recalls or perceives the

urban objects. As a simplified model of human memory, we use the recall and

recognition attributes, and their respective thresholds of activation to parameterize

the cognitive map in two different ways.

1. Introduction

Behavioural animation consists of a high level closed control loop, which enables

autonomous agents or entities to be simulated. Such actors are able to perceive their

environment, to communicate with others and to execute a number of actions, such

as walking in the street or grasping an object, in accordance with the nature of the

environment and with their intentions. Considering the navigation process, if more

complex behaviour than obstacle avoidance is to be reproduced, it is necessary to

provide additional data such as mereotopological and semantic information.
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Concerning the perception of the environment, models used in behavioural

animation have mainly focused on the visual field to filter what is viewed inside a

global geometric database. Information used to navigate has been considered as

identical for all autonomous characters and corresponds to an exact topographic

representation of the environment (Farenc & al, 1999) (Raupp-Musse, 2000) (Thomas

& Donikian, 2000).

Actually, each person has a unique representation of a city map depending

on his past experience, and on his knowledge of the city.  This cognitive map will

evolve with time. Thus it seems relevant to endow each agent with a cognitive map

structure which will hold a personal view of the agent along with the simulation as

well as a human-like memory model. Some interesting and original studies can be

made about cognitive maps as structures (Kuipers, 1978) (Mallot, 1997), some related

to the robotic navigation (Yeap & Jefferies, 1999) (Fernandez & Gonzalez, 1997)

and some merging cognitive maps and memory systems (Jefferies & Yeap, 2001).

In this paper, we present a new model which allows us to represent an

individual cognitive map merged with a simple human-like memory model for

navigation simulation in an environment. It allows us to implement navigation as a

planned and reactive navigation loop to be computed alternatively. Sections 2 and 3

present the architecture of the system and the design of the informed environment.

Section 4 describes in detail the model of the cognitive map as well as the memory

model merged in it, while section 5 briefly sketches our navigation algorithm.

2. Architecture of the system

As shown in Figure 1, the system comprises five

different modules, which will be described in the next

sections:

*    The database representing the environment

and storing all the data related to it.

*   The cognitive map which “filters” the

information of the environment.

*    The memory controller which manage the

memory in the cognitive map.

*    The route planning module which implements

the navigation algorithms.

*    And the navigation module based on the

HPTS decisional system (Lamarche,2001) which

manages the behaviour of the agents in the

environment.

Database

gathered
Information 

Agent Module

Acquisition

Rehearsal
Acquisition

Movement
instructions

Rehearsal Information

Memory
Controler

Cognitive
Map

Navigation
Module

Navigation
InstructionsRoute

Planning

Figure 1: Architecture of the system

(illustration by the author)
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3. The environment

We consider here the inner city of Rennes (Brittany, France), which consists of

approximately 2,000 buildings, as a bench for our model (see Figure 2). We could

model other cities, if we were provided the data to process them. The data gives

information on public buildings (the city hall, the main post office, churches, etc...),

private buildings and open spaces (public places, parking, etc...), the road network

(roads, crossing, pavements) and the city furniture (benches, trees, traffic lights).

3.1 The database

A specific parser has been developed, to parse and analyse the city data, in order to

convert it into an inner representation, which is a semantic, informed, hierarchical-

topological graph. This graph, which we will later call the database, is the basic tool

for simulation and the building brick of the system. The different modules managing

the agents behaviour extract the necessary information from this database via a system

of dynamic requests. This database has been designed for upgrading previous work

done by G. Thomas (Thomas & Donikian, 2000) and extended in the DynamiCity

Project.

We added a generic topological connector, which topologically links the road

network to the set of buildings. It realizes specific gatherings of urban objects, to

implement the concept of local area (Penn, 2001). By now, it regroups each building

lying in a convex set of road sections and crossing to form a block of buildings, and

links it to road sections which can be themselves gathered and regrouped in bigger

road sections. Thanks to the genericity of the model, if the connector is given specific

heuristic of gathering, several layers of abstraction implementing a hierarchy of

views is possible automatically.

Figure 2: The city of Rennes virtual mock-up   (screen captured by the author)
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The database is computed in a static way. Once the city data is parsed in an

inner representation format, the topological connector is applied and the database is

semantically informed, one can consider that the database hardly change during the

simulation. All the changes, modifications or various updates and upgrades will be

performed in the cognitive map. Our implementation of the database can be seen as

a collection of information the agent can gather and obtain from the environment

without analysing it. The information stored in the database is “objective” data, in

the sense that it does not change relatively to whoever collects it. The “subjective”

information will be stored in the cognitive map of each agent.

So the database can be seen as the common core of information each agent can

access. We have structured it as a semantically informed hierarchical topological

graph, which is detailed in the next section.

3.2 The hierarchical-topological graph.

The informed hierarchical-topological graph (IHT-graph) comprises three different

layers:

1.     the Basic Topological Layer which contains real urban objects modelled as

simple spaces.

2.    the Composite Space Layer

3.    the Local Area Layer

The base objects of  IHT-graph are simple spaces.

*    A simple space (E
s
) may include buildings, road sections, crossings, public

places, etc…

*    Urban objects and furniture as benches, trees, traffic lights are named punctuating

objects (O
p 
) and are stored in the simple space (E

s
) where they are located.

*    Simple spaces (E
s
) are linked together via a system of frontiers (F) to form the

first layer (basic topological layer) of the IHT-graph.

*    The geometrical abstraction from buildings to blocks, and from road sections to

roads are modelled using the composite spaces (E
c
). Note that two Ec can not overlap

each other.

*    A composite space (E
c
) is a space whose parameters are its frontiers together

with the list of its ‘sons’, knowing that the son of a composite space can be an E
s
 or

an E
c
 of lesser importance, in the sense that it is geometrically included in the

boundaries of its ‘father’ E
c
, which then allows a hierarchy of several composite

spaces (E
c
) to form levels in the composite space layer.

*    The edges linking two composite spaces contain pointers to all the frontiers

linking the Es included in one another, forming the composite space layer of the

IHT-graph.
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*    Local areas (El
oc

) are composite spaces that can overlap, sharing common sons in

the composite space layer. The overlapping can be viewed as the implementation of

“fuzzy” borders for a local area.

*    The edges linking two different local areas contain pointers to all the composite

spaces common to the two local areas.

Figure 3 gives an example of the translation in inner representation format

(IHT-graph) of a very simple crossing. The basic topological layer gives the

topological connections between each simple space (E
s
) of the crossing, the Bs being

buildings and Rs being road sections. The topological connector gathers all the

buildings between intersections and regroups them in composite spaces (E
c
). In the

same way, it abstracts each road section and crossing in a composite space. They are

linked together on the first composite space layer, the frontiers between two composite

spaces being the sum of the frontiers linking all the elements of the first composite

space to the elements of the second one. Then the abstraction of the local area is

realised in the local area layer, regrouping different composite spaces. Note that the

abstraction process between the two first levels is automated, but the abstraction to

the local area is not, though it would be possible to automate it if the connector were

given the necessary heuristic of gathering.

So the IHT-graph contains all the information necessary to reactive agent

navigation. In order to compute a planned navigation, we need to endow the agents

with a cognitive map, in which they can compute a route, with the elements they

perceive or they recall from their past navigation.
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Figure 3: Simple IHT-graph   (illustration by the author)



A model of hierarchical cognitive map and human-like memory

72.6

4. The cognitive map

4.1 Structure of the cognitive map

From a simulation perspective, it would seem impossible to endow each agent with

an exact copy of the database. Indeed the computer random access memory load

would be unbearable for any existing computing system. It is necessary though to

hold a “subjective” vision of the environment for each agent of the simulation. Indeed

previous works state that “mental representations of large-scale spaces differ from

maps in important respects. For example, mental representations of spatial knowledge

are distorted, fragmented and incomplete” (Barkowsky, 2001) (Tversky, 1993)

(Montello, 1998) . Meanwhile, in our model we only consider the incompleteness

and fragmentation of the information, not the fact that information can be distorted.

In order to hold a personal vision of the environment for each agent, we have designed

a model of the cognitive map based on the structure of the IHT-graph, which acts as

a filter on the database (see Figure 4).

4.1.1 A filter

The cognitive map in itself does not contain any exact information on the geometrical

or semantic properties of objects contained in the database. It can be seen as a “filter”

on the accesses the agent can have to the database, in the sense that it partially maps

the topological and hierarchical structure of the database and gives access to the

objects of the database which have already been visited, and “hides” the others.

As the pedestrian wanders around the city, the cognitive map grows with

encountered objects, whose identification is stored in the cognitive map, as well as

a link pointing to the real object in the database. For notation reasons, we will name

the cognitive map object which filters a database object, a “filter object”. To each

filter object is associated memory parameters, whose use will be detailed in the

following sections.

The structure of the cognitive map partially maps, in topological and

hierarchical ways, that of the database. It keeps the notion of space abstraction from

the basic topological layer to the one of local area. But to it is added a graph of

landmarks in order to implement two different representation of spaces.

The importance of landmarks in the navigation process, as a structural element

in the topological representation of space, is relevant. Meanwhile, from a structural

and a computational perspective, it is reasonable to state that the concept of landmark

and the notion of local area assume two different functions. It seems, though, of

great interest to implement these two representations of space as different structures,

given that they are involved in different parts of the navigational process.
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The two parts of the cognitive map can be seen to relate to the survey and the

spatial perspectives of the route, the cognitive map unifying the two different visions

in a single model, which  could fit with the vision Taylor and Tversky (Taylor &

Tversky, 1992) have of  a general spatial mental model, fairly independent of the

perspective employed to build it.

4.1.2 Local areas and graph of landmarks.

*    The first element of the cognitive map is an IHT-graph, and like the database,

consists of three different layers.

1.   The Filter Basic Topological Layer

2.   The Filter Composite Space Layer

3.   The Filter Local Area Layer

We call it the Filter IHT-graph. Its use is to spatially and semantically structure

the space representation of the agent. The different levels of abstraction allow the

agent to plan a route with different granularities.

*    The landmark graph is designed to implement the notion of known paths in the

environment (Kuipers, 1978); it is specially useful for reactive navigation, low-

level planning and replanning after the agents get lost in its environment. Each

landmark (L) has a root object taken from any of the first two layers of the Filter

IHT-graph ( Filter Basic Topological Layer, Filter Composite Space Layer), and a

group of sons, taken as well in the two first layers of the IHT-graph. Those sons are

the objects correlated to the landmark during the navigation, which can be seen as

elements of the path in which the landmark is involved. The landmarks are linked

together by landmark edges, which have no geometrical basis, but only represent

the association and the memory link the agent makes between two different

landmarks. Note that it is always possible to make a topological link between two

landmarks via the spaces connected to their roots. Note also that no pre-computed

path is stored in the cognitive map, the landmark graph gives “beacons” or major

points of reference, as well as links to Es or Ec, as elements to compute a path, thus

it can be seen as an abstract set of possible paths in the environment.

An interesting property of the fact that the landmark graph has its root in the

Filter IHT-graph is that during the navigation process it is possible to partition the

landmark graph into zones corresponding to the local areas of the Filter IHT-graph.

Due to the different nature of the Filter IHT-graph and the landmark graph,

their management of memory is very different from each other and will be discussed

in the following sections.
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4.2  Merging the representation of space and a model of human-like memory

As the cognitive map “filters” the accesses to the database, we have chosen to integrate

the memory model as part of the cognitive map itself, instead of treating it as a

separate module. Indeed, we are interested on the contextual aspect of long term

memory. In this sense it seemed interesting to merge the memory model with the

cognitive map, so that recognition and recall can be highly correlated with the

navigation and vice-versa. In order to do this, each filter object of the cognitive map

is allocated a recall parameter and a recognition one. As some studies show that the

recognition and the recall evolution must be considered together (Gillund & Shiffrin,

1984), we have made the decision to consider them embedded in the same structure,

with interleaved processes of supply encoding and retrieval encoding.
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Figure 4: A simple cognitive map structure (illustration by the author)

Figure 5: Database / Cognitive Map relation  (illustration by the author)
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4.3  Recognition and recall parameters as a  model of human memory

The memory management of the two different parts of the cognitive map, i.e. the

Filter IHT-graph and the landmark graph, shows significant differences. The memory

model of the Filter IHT-graph is a tentative attempt to model the contextual aspect

of long-term memory. But as links and correlations between filter objects are managed

in the landmark graph, the memory model implemented in the landmark graph bears

more resemblance to an associative memory model. We discuss these separately in

the next two sections.

4.4  Memory in the Filter IHT-graph part of the cognitive map

Each filter object is ascribed a couple of real numbers lying in the interval from zero

to one, which represent the recall and the recognition values associated with this

filter object. As the agent navigates, objects enter its visual field. Those objects

whose memory parameters were first initialised to zero, are added a global memory

coefficient m depending on each agent.

The (µ) value is altered by coefficients which depend on the type of perception

of the agent. We have adapted a model of perception designed by Chopra and Badler

(Chopra & Badler, 1999) which introduces three different perception modes for an

agent, depending on its visual attention. The perception can be either:

*    Exogenous (the attention is spread over a high number of things, exceptional and

peripheral events are noticed, which leads to high recall with a standard recognition)

*    Passive  (the perception is attracted by highly contrasted and salient zones, but

the attention is quite low, which leads to a high recognition and a standard recall)

*    Endogenous (the agent is supposed to be thoughtful and focused on a plan  to

execute. It is not prone to pay attention to its environment, which leads to standard

recall and recognition)

So each time the agent perceives an object, the object memory parameters

are given a small value depending on the type of perception of the agent, and of the

µ-coefficient. Both of the memory parameters are also a value σ, depending on the

saliency of the observed object.

Assume a space Ει , knowing that µ∈ [0,1] and σΕι∈ [0,1], the memory

parameters will be:

Recall Recognition

a) Endogenous 0.4∗µ+σΕι 0.4∗µ+σΕι

b) Exogenous 0.8∗µ+σΕι 0.4∗µ+σΕι

c) Passive 0.4∗µ+σΕι 0.8∗µ+σΕι
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This ensures many ways of encoding the memory parameters of an unknown

space in the cognitive map, as well as the rehearsal of spaces already stored in the

cognitive map.

The rehearsal and the control of the µ and σ coefficients are managed by the

memory controller in a way that guarantees that the system remains numerically

stable with time. The rehearsal is simply the addition of these coefficients to the

ones already ascribed to the object. Meanwhile, it is interesting to mention that once

a parameter has reached its maximum (which is set to 1 for all the parameters), it is

not added any additional value until it has decreased below the maximum threshold.

If the perception is exogenous or passive, the semantic identification is active.

That is to say, the agent is able to identify the local area in which it is navigating. As

a computational consequence, the spaces comprising the hierarchy of the observed

space are activated while their memory parameters are given the same value as that

of the observed space (see Figure 6). This leads quickly the memory parameters of

higher composite spaces and local area reaching a maximum. This models the fact

that, in only exploring the town, one quickly bears in mind the local areas and their

organisation, even though knowing only  imperfectly the objects which compose

them (Lynch, 1960).

If the perception is endogenous the hierarchy is not activated and only the

first layer of the Filter IHT-graph is modified (the agents navigates thoughtfully

without paying attention to its environment).

Note that only the nodes of the Filter IHT-graph, which represents the urban

objects, are endowed memory parameters. The edges linking them together are not.

Edges symbolically representing associations between objects, are dealt with in the

landmark graph.

Propagation
of the memory
parameters
(exogenous and
passive perception)

FEC2(mFE4+mFE5)

FE1 (mFE1)

FE2(mFE2)

FE5(mFE5)

FE3(mFE3) FE4(mFE4)

FEC1(mFE1+mFE2+mFE3)

FELoc(mFE1+mFE2+mFE3+mFE4+mFE5)

Figure 6: Propagation of parameters in Filter IHT-graph  (illustration by the author)
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4.5  Modelling the landmark graph

In the landmark graph, only the edges are endowed memory parameters, because

the graph is designed to model the memory associations between objects and

landmarks or between two landmarks, which the agent makes while exploring its

environment. Anyway, every object identified from the landmark graph, is

incorporated in the Filter IHT-graph. It has, then, memory parameters.

4.5.1 Landmarks as a spatial and memory structural item

Below is a brief sketch of the algorithm which dynamically builds the graph of

landmarks:

• The agent navigating, meets a landmark L
1. 

The landmark differs from the ur-

ban objects which surround it by its visual or thematic saliency. The saliency σ

being a parameter proper to each space, the object having a saliency parameter

greater than the general threshold σ
t
 of saliency are considered as visually sali-

ent landmarks.

• Once the landmark is perceived the object L
1
 is created in the landmark and is

associated its root space ( E
s 
or E

c
).

• L
1
 is associated with ∂t1, a time counter which is initialised to a value ∂t1

0

depending on the saliency σ
1
 of L

1. 
As the agent will get further from L1, ∂t1

decreases.

• Each space E
i
 encountered is linked to L

1
 by a hierarchical edge which will be

given a value ∂t1
i.

• The decrease of ∂t1 is identified by τ
i
 ∈Ν  the length of the topological path

linking L and E
i
. (for instance if there are four spaces lying on the path between

L and E
i
, τ

i
 will be equal to 5).

• The edge linking L
1
 to E

i 
 is thus given the value ∂t1

i
= ∂t1

0
/ τ

i

• The recall and recognition parameters (a1
i
,b1

i
) of the edge linking L

1
 to E

i 
are

given the following values:

�  a1
i
= ∂1t

i 
+ aE

i
(final recall)

�  b1
i
=2×∂1t

i 
+ bE

i
(final recognition)

aE
i 
being the recall parameter associated to the space E

i, 
upper bounded to 1.

bE
i 
being the recognition parameter associated to the space E

i
 upper bounded to

1.

(Note that if aE
i 
=1 and bE

i
=1, they are not added values until they become less

than 1)

• Along the navigation, any space E
i 
encountered will be associated with the land-

mark, as long as ∂t1>σ
t
.

• Two cases can appear:

� The agent may meet another salient landmark L
2
 while ∂t1>σ

t
. Then the as-
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sociation process is doubled for each new space E
j 
 encountered, with a new

∂t2>σ
t
. Each new E

j 
will then be linked to L1 and L2 until ∂t1<σ

t
 or ∂t2<σ

t
.

� ∂t1<σ
t
 and the agent has not encountered any relevant landmark before while

∂t1 was still positive. We then make the assumption, it is forced to find arbitrar-

ily a new landmark L
2, 

if the agent is still in an exogenous or passive perception

mode, decreasing the saliency threshold σ
t
. If not the following spaces encoun-

tered will not be linked to landmarks.

The first step of the construction of the graph of landmarks is performed in

this way, linking spaces taken from the two first layers of the graph to a particular

salient space, put in relief as a landmark. The saliency detection is realised, endowing

each urban object with a saliency parameter, but could be extended to the concept of

a saliency map stored as a property of an urban object in the informed environment

(Courty, 2002) .

In order to complete the process of constructing the landmark graph, the next

step is to explain how the inter-landmark relations are modelled.

4.5.2  Modelling the inter-landmark relation

We define low-level planning by stating that the more the agent knows its

environment, the more it is prone to guide itself using landmarks and small features

of its environment (Lynch, 1960). Michon and Denis (Michon & Denis, 2001) state

that a “function of a landmark is to help locate other landmarks, which are supposed

to trigger a specific action”. Knowing this and in order that the low-level planning

can be done, we have to model inter-landmark relations, which will link them in the

cognitive map.

��
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��
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Figure 7: Linking landmark to objects (illustration by the author)
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4.5.2.1  Single space case

We mentioned that an edge linking two landmarks did not rely on geometrical

properties. The edge linking two landmarks represents the association in memory

made with these two landmarks. Two landmarks can only be correlated in memory

if they share a group of spaces they are associated with. In order to quantify the

recall and recognition parameters associated with an edge linking two landmarks,

we must use the recall and recognition parameters of  the edges linking the shared

spaces to the two landmarks.

Various models have been proposed in order to model human memory

(Raaijmakers&Shiffrin,1981) (Gillund & Shiffrin, 1984) (Eich, 1982), some more

specific to contextual and spatial long term memory (Barkowsky, 2001) (Jefferies &

Yeap, 2001). We have been inspired by the TODAM model of associative memory

designed by Murdock (Murdock, 1982), based on a convolution product to encode

an association between two item vectors. Indeed as shown in Figure 8 , we use the

recognition and recall parameters of the edges L1↔E and L2↔E as vectors to make

a convolution product, which is truncated to the two first coordinates.

As the numerical addition and multiplication do not guarantee the numerical

stability of the system, we use fuzzy logic operators, which gives the following

correspondence:

( )L1a
L1b ( )L2a

L2b

  L1a*L2b +L2a*L1b
L1a *L1b( )L1 L2

E
Figure 8: Inter-landmark relations, Simple case  (illustration by the author)

Numerical Logic Fuzzy Logic

+ ∨ max

* ∧ min

L1a*L1b L1a∧ L1b min(L1a,L1b)

L1a*L2b+L2a*L1b (L1a∧ L2b) ∨  (L2a∧ L1)    max(min(L1a,L2b),min(L2a,L1b))
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Hence  a logical interpretation of the recall will be as followed. To recall the

relation between L1 and L2 using E, the agents must necessarily recall the relation

between L1 and E, and the relation between L2 and E. Thus it seems natural than the

recall relation between L1 and L2 depends on the weakest recall relation among

L1↔E and L2↔E.

A logical interpretation of the recognition is a bit more subtle. If the agent

navigates from L1 to E, and once in E, it recognises there was a relation between L1

and E (depending on the recognition parameter L1b), the fact that the agent recognises

an existing relation between L1 and L2, can only be possible if it recalls that there is

a relation between E and L2 (depending on the recall parameter L2a), but the two

conditions are necessary, giving L2a∧ L1b.

Conversely, and starting from L2 to L1, it gives the symmetrical result

(L1a∧ L2b). Thus the recognition of the association between L1 and L2 depends on

L1a∧ L2b or on L2a∧ L1b, giving the over all expression (L1a∧ L2b) ∨ (L2a∧ L1b).

4.5.2.2 Multiple spaces case

In the multiple spaces case, we have the sum of the convolution product of each

simple space case, which after interpreting it in fuzzy logic, leads the sum to become

a maximum. The best single space case recall parameter and the best single space

case recognition parameter are retained, knowing that most of the time they come

from different single space cases. This can be interpreted by proposing that it is

natural that during the planning stage, the space which gives the best recall will

show up first in memory, then it is natural that the recall value of the landmark

association is the one from this single space case. For the recognition parameter it

seems natural to use as well the best single space case.

L1 L2

E1 E2(

(L1a1   L2a1)   (L1a2   L2a2)

(L1a1   L2b1)   (L2a1   L1b1) (L1a2   L2b2)   (L2a2   L1b2) )(

(L1a1
L1b1) ( )L2b2

L2a2

)( L2a1

L2b1

L1a2

L1b2 )
Figure 9: Inter-landmark relations, Multiple case (illustration by the author)
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4.6 The memory controller

4.6.1  Degrading and Rehearsal.

The way the encoding and the rehearsal in the cognitive map is done, has been

exposed in details in the previous sections. Meanwhile some detail remains to be

explained.  The µ-coefficient is personal to each agent of the simulation, and

represents, in a way, its speed of learning. It is set at the beginning of the simulation,

at the configuration stage of the agent.  Note that each time an object is recalled in

the cognitive map at the navigation planning stage, the recall parameter of the object

is given a value µρ << µ, corresponding to the rehearsal it makes recalling the object.

The values of the memory parameters of the whole cognitive map are

uniformly degraded with time, a value depending on the duration of the simulation

and of simulation time/real-life time ratio λ. This ratio is not the same for recognition

and recall. Taking into account that recall lifetime decreases far more quickly than

the recognition one, we set :

λrecall > α∗λ recog  (with α>1)

The memory controller subtracts λrecall from the recall parameter and λrecog

from the recognition parameter of all the cognitive map objects at each time step of

the simulation, to ensure a uniform degradation of the memory with time (note that

if the recall and the recognition are zero, they are not subtracted). The λ-coefficient

is unique to each memory controller and thus to each agent. It represents in a way its

speed of forgetting.

4.6.2 Threshold of recognition and recall.

As for the λ and µ coefficients, and as our model of memory remains a very simple

one, we have set both the thresholds of recall and recognition of all the objects of the

cognitive map, to 0.5, which is the half of the interval on which each parameter lies.

5  The navigation.

5.1  The real-time planning

As Arkin highlights (Arkin, 1989), an efficient algorithm for urban navigation should

manage reactive and planned navigation together. Our algorithm is designed around

two main steps (we do not give details of it, only the concepts which underlie it, as

it is fairly complex in terms of how it oprates):

*  The planning : the agent is given a starting point and a destination, then it

plans its route between these two points computing the route with elements taken

from the Filter IHT-graph (high-level planning) and the graph of landmarks (low-

level planning) through what we name the Up-Down planning.

*  The reactive navigation.
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5.2  Up-Down planning

1. In the case where all the elements lying between the start point and the end

point are known and recalled, the algorithm acts this way:

* The most remote local areas of the starting point S and end point E are

identified, say Eloc1 and Eloc2.

*  The shortest path E={Eloc1,Ei,…,Ej,Eloc2} between Eloc1 and Eloc2 is

found in the Filter Local area layer. This is the high-level planning.

*  A subgraph Ls of landmarks is given by the partition of E in the graph of

landmarks of the cognitive map.

* The sequence of landmarks leading from S to E, which have the higher

recall is chosen in L
s
, representing the best known set of paths.

*  The agent is guided by its sequence of landmarks, and follows and

recomputes its path refining it according to the potential recognised spaces along

the previous path.

2. In the case when it lacks some local areas or landmarks on the way from S to E:

*  The path is computed as above, using the known elements around S/Eloc1

and E/Eloc2.

*  In the region where local areas are lacking, or landmarks are lacking, the

algorithm switches to reactive navigation.

5.3 The reactive navigation

In case the agent is really lost, i.e. walks in a zone where nothing triggers recognition

or recall in its cognitive map, it follows the same direction, preferably along a bigger

axis or road section until it meets a known landmark. Then it recomputes a new

path, with the Up-Down planning algorithm, if possible, from this new landmark to

the end point E. If this is not possible it switches again to reactive navigation mode

until he likely meets a significant landmark on the route until the end point E.

6  Conclusion and future work

We have presented a model of cognitive map merged with a model of human-like

memory, designed to implement reactive and planned navigation. The model of

human memory remains simple, but is generically designed to allow the various

parameters controlling the system to be changed relative to the type of simulation

required. In all the configuration of the navigation process, the start point and the

end point of the route are supposed to be known, which leads to a restriction on the

emerging cases of planning and navigation in the simulation. We plan to extend our

work, endowing one agent with the ability to ask its way from another, as a first step

exchanging information from their respective cognitive map, via a system of short

term memory(SMS), and then, linking the information gathered in the cognitive
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map and the database to a natural speech processing unit, which would offer a readable

way to follow the agent’s different planning  stages. It would put in relief the

interesting problem of the representation of non-explored items in SMS, issued from

the route communication, and their integration in long-term memory.
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