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Abstract

We present a broad, phenomenological picture of the distribution of the length

of urban linear segments, l, derived from maps of 36 cities in 14 different

countries. By scaling the Zipf plot of l, we obtain two master curves for a sample

of cities, which are not a function of city size. We show that a third class of

cities is not easily classifiable into these two universality classes. The cumulative

distribution of l displays power-law tails with two distinct exponents,                   and

  . We suggest a link between our observations and the possibility of

observing and modelling urban growth using Levy processes.

1. Introduction

The morphology of urban settlements and its dynamics has captured the interest

of researchers [1, 2, 3, 4, 5, 6, 7, 8, 9] as it may shed light on Zipf’s law for

cities [4, 5, 10, 11], challenge theoretical frameworks for cluster dynamics or

improve predictions of future urban growth [2, 6, 7].

The search for a unified theory of urban morphology has focused on the

premise that cities can be conceptualized at several scales as fractals. At the

regional scale, rank-order plots of city size follow a fractal distribution [1] and

population scales with city area as a power-law [12]. More recently, it has been

observed that the area distribution of satellite cities, towns and villages around

large urban centres also obeys a power-law with exponent        [2, 6]. At the

scale of transportation networks, railway networks appear to have a fractal

structure [13]. At the scale of the neighbourhood, it has been suggested that

urban space resembles a Sierpinsky gasket [1, 12]. These scales are inter-related as

summed up in [1: 241] (author’s translation from French): ‘Polycentric growth, which

is connected to the non-homogeneous distribution of pre-urban cores and the birth
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of a hierarchy of sub-centres, influences the morphology of the transport network,

which plays in itself an important role in axial growth and therefore for the future

spatial development of the urbanised area’.

The fractal dimensions of US cities and international cities have values rang-

ing from 1.2778 (Omaha, [14]) to 1.93 (Beijing, [1]), where the fractal dimension of

large cities tends to cluster around the latter value [1, 12, 15, 14]. Studies of urban

growth of London between 1820 and 1962 show that fractal dimensions for this

period vary from 1.322 to 1.791 [12]. The fractal dimensions for the growth of

Berlin in 1875, 1920 and 1945 are 1.43, 1.54 and 1.69, respectively [1]. The fractal

dimension of urban aggregates is a global measure of areal coverage, but detailed

measures of spatial distribution are clearly needed to complement adequately the

description of the morphology of an urban area [7]. Further, current approaches to

data collection and modelling identify cities as fractal only on the urban periphery

of the giant urban cluster that grows around the city core (or central business dis-

trict), as clusters become compact at distances close to the centre of the city [12, 6].

Although remote sensing techniques are promising in extracting urban morphology

with greater detail, available studies have, to our knowledge, been limited to indi-

vidually selected, medium scale cities (see e.g. [16]).

Hillier and Hanson [17] suggest an underlying structure to urban open space

that is determined by the complexity of buildings which bound the space [18]. Ur-

ban space available for pedestrian movement, excluding by definition physical ob-

stacles, is relatively linear. When people walk through this open space, they per-

ceive it locally as a ‘vista’ which can be represented approximately as a line. The

global set of vistas, the so-called axial map, is defined as the least number of longest

straight lines. An axial map can be derived by drawing the longest possible straight

line on a city map, then the next longest line, so-called axial line, until the open

space is crossed and ‘all axial lines that can be linked to other axial lines without

repetition are linked’ [17, 19]. Figure 3 shows several axial maps.

Axial maps may be relevant to researchers interested in urban morphology.

They provide a simplified signature of the growth process, since the analysis is

restricted to the linearity of open space. Indeed, one could hope to extract the spatio-

temporal dynamics of axial map growth by analysing a sequence of aerial photo-

graphs of the urban periphery over a period of growth. Conversely, one could hope

to model urban growth as the trajectory of N walkers on a plane, the step of the walk

being axial line length.
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Here we show that we can rescale axial line length and rank to obtain two

distinct rank-order curves that provide a classification for several cities indepen-

dently of city size. We also show that there is a class of cities that do not obey this

classification. The collapse of curves suggests that spatial fluctuations in the length

of urban linear structures, differing in size and location, are governed by similar

statistical rules and supports the hypothesis that the linear dimension of large scale

structures in cities reflects generic properties of city growth [20].

1.1 Can physicists contribute to urban science?1

Statistical physics deals with systems comprising a very large number of interacting

subunits, for which predicting the exact behaviour of the individual subunit would

be impossible. Hence, one is limited to making statistical predictions regarding the

collective behaviour of the subunits [21]. Recently, it has come to be appreciated

that many such systems which consist of a large number of interacting subunits

obey universal laws that are independent of the microscopic details. The finding, in

physical systems, of universal properties that do not depend on the specific form of

the interactions gives rise to the intriguing hypothesis that universal laws or results

may also be present in economic and social systems [22, 23]2.

If there is one message that emerges clearly from statistical physics, it is that

sometimes the details do not matter. That, in a nutshell, is what is meant by

universality. This is a way of saying that collective behaviour tends to be robust, and

shared by many apparently different systems [24].

1.1.1 What is scaling? and universality?

Scaling may be expressed as a relatively compact statement:

A scale invariant system has the same statistical properties and hence “looks

almost the same” at many different scales of observation. The actual object is different,

but since its statistical properties are the same, one cannot readily distinguish the

original complex object from a magnification of a part of it [25].

For a vivid analogy, recall the infamous Tacoma Narrows Bridge that once

connected mainland Washington with the Olympic peninsula3. One day it suddenly

collapsed after developing a remarkably “ordered” sway in response to a strong

wind. Students learn the explanation for this catastrophe: the bridge, like most objects,

has a small number of characteristic vibration frequencies, and one day the wind
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was exactly the strength required to excite one of them. The bridge responded by

vibrating at this characteristic frequency so strongly that it fractured the supports

holding it together. The cure for this “diseased bridge” was a design that is capable

of responding to many different vibration scales in an approximately equal fashion,

instead of responding to one frequency excessively.

What about universality, the notion in statistical physics that many laws seem

to be remarkably independent of details?

It was found empirically that one could form an analog of the Mendeleev

table if one partitions all critical systems into “universality classes”. It was found

that quite disparate systems behave in a remarkably similar fashion near their

respective critical points -simply because near their critical points what matters most

is not the details of the microscopic interactions but rather the nature of the “paths

along which order is propagated” [26]. As we shall see, the fact that data for each

city collapse onto a scaling function supports the scaling hypothesis, while the fact

that the scaling function is the same for several different cities is truly remarkable.

Two cities with the same values of the scaling exponent are said to belong to the

same universality class. Thus the fact that the exponents are the same for e.g. London

and Athens, but different from the exponents for e.g. Tokyo and Bangkok, implies

that the former belong to a distinct universality class from the latter.

Newcomers to the field of scaling invariance often ask why a power-law

does not extend ‘forever’ as it would for a mathematical power-law of the form

. This legitimate concern is put to rest by reflecting on the fact that

power-laws for natural phenomena are not equalities, but rather are asymptotic

relations of the form                   . Here the tilde denotes asymptotic equality. This

means that f(x) becomes increasingly like a power law as               . For a discussion

on scaling and universality, the reader should refer to [23, 25].

1.1.2 What are power-law distributions?

Frequency or probability distribution functions (pdf) that decay as a power-law of

their argument

have acquired a special status in the last decade and are sometimes called “fractal”.

A power-law distribution characterizes the absence of a characteristic size:

independently of the value of x, the number of realizations larger than       is        times

the number of realizations larger than x. In contrast, an exponential for instance

does not enjoy this self-similarity4, as the existence of a characteristic scale destroys
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this continuous scale invariance property [27]. In words, a power-law pdf is such

that there is the same proportion of smaller and larger events, whatever the size one

is looking at within the power-law range.

Power-law pdfs have the characteristic that the sample mean does not approach

a limiting value as more data is collected (the averaged measures will either increase

or decrease with the amount of data analysed). There is no single value that we can

identify as the “right” value for the average. Therefore, the population mean does

not exist. For an insightful discussion on power-law pdfs see e.g. [28].

Researchers may care passionately if there are analogies between physics

systems they understand (like critical point phenomena) and urban systems they do

not understand. But why should anyone else care? One reason is that scientific

understanding of earthquakes moved ahead after it was recognized that extremely

large events -previously regarded as statistical outliers requiring for their interpretation

a theory quite distinct from the theories that explain everyday shocks- in fact possess

the identical statistical properties as everyday events; e.g., all earthquakes fall on

the same straight line on an appropriate log-log plot. Since, as we shall see, urban

phenomena possess the analogous property, the challenge is to develop a coherent

understanding of urban morphology that incorporates not only the space where we

navigate daily, but also the extremely rare ‘morphological earthquakes’.

Finally, a current interesting hypothesis is that possibly one reason that di-

verse systems in such fields has physics, biology, and ecology have quantitative

features in common may relate to the fact that the complex interactions characterizing

these systems could be mapped onto some geometric system, so that scaling and

universality features of other complex systems may ultimately be understood in

terms of the connectivity of geometrical objects [25].

2. Structure of urban space

Let                    ,                          , be the      
 

axial lines associated with city i. Each axial

line,                            is defined by the coordinates of its extremities

The axial map of city   ,          is thus a set of          points on a fourth dimensional space,

               where            are the polar coordinates of the axial line

geometric centre,                                                                           and                        are

the polar coordinates of the axial line’s extremities on its geo metric centre reference

system,                                                             .
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Coordinates       and       encode the geographic location of axial lines. The

unconditional distribution of      is multimodal for rather general families of urban

settlements. This occurs, for example, when land is partitioned in clusters of randomly

oriented orthogonal grids. Nevertheless, the unconditional distribution of l is unimodal

and skewed to the right (see Figure 1), and, thus, a good candidate for inspection of

intermittency in urban space. We fit the data to a stretched exponential distribution

[29: 153-154] in Figure 1 (a), but verify that the fit is unsuitable to describe the large

events.

3. Inverse square and cubic laws for the distribution of line length

We analyse the unconditional probability distribution of (axial) line length of 36

cities in 14 different countries (see Table 1). In our analysis we use the rank-order

technique [29]. To interpret the apparently unsystematic data in Figure 2(a) effec-

tively, it is instructive to scale the data. Since the rank ranges between 1 and

                  , we define a scaled relative rank for city i,                                      .

Similarly, for the ordinate, it is useful to define a scaled line length by

[30] .
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Table 1: Geographical location and number of lines

of the cities analysed

Figure 1: Data are shown for the city of Tokyo. (a)

Rank-order plot of line length (circle points) together

with a fit of the data to a stretched exponential pdf

(solid line). (b) Unconditional probability density of

line length.

Country City Number of lines

Japan Tokyo 73753

U.S.A. Chicago 30571

Chile Santiago 26821

Thailand Bangkok 24223

Greece Athens 23329

Turkey Istanbul 21798

U.S.A. Seattle 20213

U.K. London 15969

U.S.A. Baltimore 11636

Netherlands Amsterdam 9619

U.K. Bristol 7028

U.S.A. Las Vegas 6909

Iran Shiraz 6258

Cyprus Nicosia 6023

Netherlands Eindhoven 5782

U.K. Milton Keynes 5581

Spain Barcelona 5575

U.K. Wolverhampton 5423

India Ahmenabad 4876

U.S.A. New Orleans 4846

Iran Kerman 4372

U.K. Nottingham 4365

U.K. Manchester 4308

U.S.A. Pensacola 4296

Iran Hamadan 3855

Iran Qazvin 3723

Netherlands The Hague 3350

U.K. Norwich 2119

U.S.A. Denver 2092

Iran Kermanshah 1870

U.K. York 1773

Iran Semnan 1770

Bangladesh Dhaka 1566

Hong Kong Hong Kong 916

U.K. Hereford 854

U.K. Winchester 616
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As shown in Figure 2(d),

there is relatively good collapse

of the data sets onto two master

curves for 28 of the 36 cities

under study (the cities plot in

red and blue). The other 8 cities

do not collapse clearly onto a

single curve (see Figure 2(b)).

Figure 2(c) is a plot of the

exponents from a least-squares

fit to the data of Figure 2(b) for

, where the data

are visually the most linear. The

fits on the rank order plot lead

to straight lines with slope  ,

which suggest that the line

length probability density may

have a power-law tail,

with exponents close to

         (cities in blue) or

(cities in red). The inverse

square and cubic laws have

diverging higher moments

(larger than 2 and 3,

respectively) and are not stable

distributions.

Figure 3 is a plot of

several axial maps, where we

only plot lines with

 (the range of data used in the

least-squares fit of Figure 2).

We suggest that urban growth

can be regarded as a process

where axial lines are added to

the urban periphery (this could,

in principle, be monitored

through remote sensing

techniques for cities undergoing

rapid urbanization) and

Figure 2: (a) Rank-order plot of line length versus rank. Consecutive

curves have been vertically shifted for clarity. (b) Data in (a) in scaled

units. (c) Exponents determined from least squares fits to the log-log

data in (b) for 10°.2 < y. Error bars are 95% confidence bounds. (d) Data

in (b) excluding cities in green. Cities are coloured according to their

ordinate in (c), and we have coloured a group of cities in green as they

deviate considerabily from the two universality classes in (d).

Figure 3: Axial maps of a sample from Figure 2 of cities coloured in blue (Tokyo and

Bangkok), red (Athens) and green Las Vegas).
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modelled by N walkers, which jump along the corresponding N axial lines, extending

the city. More needs to be known on the distribution of the walkers’ waiting time to

correctly model the dynamics of urban growth. Nevertheless, the walkers would

generate a non-stable process, as the exponents         and        are, apparently, outside

of the Levy stable region.

4. Discussion

We have found that the length of urban open space structures displays universal

features, largely independent of city size, and is self-similar across morphologically

relevant ranges of scales (2 orders of magnitude) with exponents                  (cities

in blue) and                  (cities in red). Our results are unexpected as two universality

classes appear for a wide range of cities. The power-law tails of the pdfs support the

hypothesis that urban space has a fractal structure [1, 12], but the parallelism to a

Sierpinski gasket [1, 12] may be too simple for an accurate description.

Our findings show that it is important to model in detail the open space ge-

ometry of urban aggregates. They also support the hypothesis that it is more useful

to model urban morphology as random rather than as the outcome of rational deci-

sions, as previously suggested [12, 2, 6].

We interpret the difference in the exponents for the two groups of cities with

‘macro’ distinctions in urban planning policies. Cities with exponents                     (cities

in blue) display open space alignments which cross the whole structure whilst cities

with                  (cities in red) tend not to. We believe this can be explained by the

dominance of global planning for the former as opposed to local planning for the

latter.

Researchers have found exponents  α  ~~ 3  when studying the distribution of

normalized returns in financial markets, both for individual companies [31, 32] and

for market indexes [33]. Our results for the class of cities plot in red on Figure 2 is

reminiscent of these studies. We believe that parallels between urban growth and

finance may not be too far fetched, as both processes seem to be largely dominated

by geometric phenomena [8, 34]. Indeed, there may be similarities between the

dynamics of price fluctuations and urban growth, and we propose that axial lines

may be seen as the urban equivalent of economic returns.

As more data becomes available through remote sensing, quantitative analy-

ses should provide an improved view of the spatio-temporal dynamics of urban

growth, particularly in squatter settlements, where time-scales for growth are much

shorter than in conventional cities and one could hope to model growth against
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observed data. Further studies are still required, but it seems that the impact of local

controls on growth (e.g. the green belt policy for London) is, at most, spatially local-

ized. Indeed, at a ‘macro’ level, cities display a surprising degree of universality.

Notes

1This section is based on extracts from the references in the text.

2An often-expressed concern regarding the application of physics methods to the social sciences is that

physics laws are said to apply to systems with a very large number of subunits (of order of 1020 while

social systems comprise a much smaller number of elements. However, the “thermodynamic limit” is

reached in practice for rather small systems. For example, in early computer simulations of gases or

liquids reasonable results are obtained for systems with 20 - 30 atoms.

3The bridge collapsed on November 7, 1940 at approximately 11:00 a.m. and had been open to traffic for

only a few months. The reader is invited to view historical film footage which shows in 250 frames (10

s!) the maximum torsional motion shortly before failure of this immense structure [http://cee.carleton.ca/

Exhibits/Tacoma-Narrows/].

4An object is said to be self-similar if it looks “roughly” the same on any scale.
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