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Abstract

This paper proposes that in order to implement an angular-based choice1  algorithm

it is first necessary to implement a new type of depth definition. Such a depth

algorithm would not only calculate the ‘minimum’ angular depth from any origin to

any destination (as per Dalton, 2001) but specifically stores the depth as complex

number, which additionally represents the cumulative angle that facilitated that

particular minimum angular depth calculation. By using such a representation it

becomes possible to compute the unique angle of intersection of any two axial lines,

where the starting-direction of a hypothetical individual travelling from one axial

line to another is known. This paper concludes with the suggestion that the use of

complex number depths (namely depths that have a real and imaginary component)

is an interesting and valuable extension of the concept of depth; originally depth

could take only an integer value, this was then extended to a real numbers (angular

depth) and finally has been extended once more by utilising complex numbers. The

use of such an algorithm, as will be described in this paper, to calculate complex

depth can then be used to compute true angular depth and hence angular choice for

any given axial system. This paper will present the proposed algorithm and new

measure in full.

1. Introduction

In recent years, algorithms that employ the concept of weighted, non-integer step-

depths have begun to emerge as an interesting variant of the topological-based

measures traditionally used in space syntax research such as integration. One example

of the use of a weighted graph was presented in the author’s earlier paper on fractional

integration (Dalton, 2001). A limitation of the current algorithm used to compute

weighted, angular depth is the lack of prior knowledge concerning the angle of

incidence between two lines; two angles may be calculated between any two

intersecting lines, ß and ∂ such that (2 x ß) + (2 x ∂) = 360°. The algorithms used to

calculate angular depth made the essential assumption that the smaller angle should

always be taken account of and the larger angle disregarded. This was considered to

be a necessary step taken to simplify the algorithm. Theoretically this was justified

on the basis that since angular integration, like integration, considers all journeys
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from everywhere to everywhere else that this assumption would balance out over all

journeys. However, intuitive observations of typical test cases suggest that one angle

often appears the more likely for any given journey. Furthermore, from an algorithmic

perspective, the computer is not actually constructing a series of hypothetical journeys

though a map but rather is moving though an abstract graph representation.

The problem of a mismatch between algorithmic and common sense

conceptions of journeys, is exacerbated when considering possible implementations

of algorithms such as choice which are implicitly journey-based. The choice

algorithm/measure has always had a strong attraction to researchers due to the fact

that it is based upon a hypothetical individual moving through the axial map/graph

in a specific manner and hence is easy to both comprehend and conceptualise. Such

individual journeys are then simply aggregated throughout the system, resulting in a

choice value for each axial line. However, since correlations between the measure

choice and pedestrian movement observations have failed to improve upon

correlations obtained with algorithmically simpler measures such as integration then

the simpler measures have tended to prove more popular. This paper proposes that

by introducing the angle between any two axial lines as a pertinent factor in route

selection, then the new measure of angular choice might result in improved

correlations with pedestrian movement and possibly explain why choice has failed

to out-perform integration despite its clearer situated individual model.

2. Angular or fractional analysis

A previous paper (Dalton, 2001) introduced the concept of angular depth as a method

to solve a range of problems in the construction of the axial map.

“Fractional Angular Analysis works by defining a fractional analysis where

the angle of incidence is 1.0 where the axial lines are at right (90 degree) angles.

Lines that are parallel and intersect have fractional distance of 0.0… From this,

lines that are nearly parallel have low fractional distances [from one another]. We

would expect this kind of analysis to make long meandering streets [comprised] of

many axial lines to become stronger integrators [than would be the result if using

traditional axial analysis]. Equally making one right-angled turn might well mean a

strong increase in ‘distance’… We now can build a network as in the traditional

manner, except here the graph will have steps which are not ‘integer’ numbers (1, 2,

3) but rational or fractional numbers).” (Dalton, 2001)2

While the fractional method described above facilitates numerous benefits,

both practical and theoretical, a number of questions arise from this method, which

need further evaluation. One natural question raised by Asami et al. (Asami, 2002)
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in their paper on fractional angular analysis, is the question regarding obtuse angles

and the implementation of angularity with respect to related measures such as choice.

The question is posed of why obtuse angles are avoided by fractional angular

integration. Consider Figure 1, which is a representation of an axial system, marked

with specific locations (a1 and a2) and axial lines (a1—a2, b, c, d). If we first imag-

ine a pedestrian starting at point a1 and walking towards line b, then clearly the

angle the pedestrian must turn, as they leave line a1—a2 and start moving along line

b is 60°. If that same person were to start at point a2 and also turn to walk along line

b then the angle they would turn through this time would be 120°. There has been a

criticism at the convention used in fractional angular depth analysis of finding the

smallest angle (60° in both cases for a1—a2.b and a1—a2.c) between two lines for

the depth-weighting function. Intuitively it seems as if it should be both possible

and easy to include angles greater than 120°. If the axial line labelled b in Figure 1

did not exist in the fractional system, then our imaginary pedestrian would have to

turn 120° if travelling from point a1 to line d (via line c). The fractional algorithm

assumes the angle rotated through must be 60° (the smaller of 120° and 60°). The

algorithm would then apply a weighting of 0.6667 to this edge in the associated

graph instead of the more natural angle of 120°, which would give a weighting of

1.3333.

Does this omission to consider obtuse angles of incidence negate the math-

ematics or indeed the functionality of fractional angular integration? It is suggested

that this is not the case. To understand why angles are limited to the smallest angle

£ 90°, consider a pedestrian moving along the axial line a1—a2 from the point a1

and navigating to line d on the axial map in Figure 1. Intuitively we would imagine

they should select line b in preference to line c (i.e. that they probably started at

point a1). This intuition is substantiated by observational data from (Conroy Dalton,

2003). Those who object to limiting fractional depth values to 90° or less fail to

consider the reverse case of a pedestrian moving from point a2 on the axial line

a1—a2 towards d. In this case the angle moved through from the line a1—a2 via

line c is now also 60°. Now consider the third case, where the imaginary pedestrian

begins their trip from midway between the intersections a1—a2.b and a1—a2 .c.

Which route would our intuition suggest in this case? This thought experiment has

point a1

line b line c

line d

point a2line a1-a2 Figure 1. A Sample Axial System.
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been included in the paper to demonstrate that visually we are often deceived into

reading diagrams from right-to-left and we fail to consider the other possible left-to-

right case. The algorithm, which calculates fractional depth, however, makes no

such assumptions.

Where do pairs of extremely obtuse and acute angles of intersection (i.e. an-

gles of intersection least similar to a 90° turn) occur in urban systems? It could be

suggested that these pairs of angles of intersection often occur in sequences of axial

lines, forming meandering routes through the urban fabric; these lines frequently

serve as arterial or center-to-edge routes (Hiller, 2001). I would also suggest that

when considering these meandering routes, comprising of a number of axial line

segments connected shallowly, that we imagine them to be comprised of acute rather

than obtuse angles of incidence. That is to say, that we perceive that we would make

only small changes of direction were we to be traversing such a sequence of axial

lines. It is for this reason of environment-perception, that it seemed logical to give

preference to acute angles over obtuse ones and hence the resultant 90° limit origi-

nally made in fractional angular depth calculations. The following two examples

show how our perception of a diagram or a system can differ widely although

computationally they would be identical.

The case for limiting angles to less than 90° appears to fail in the case of a

switchback3  as in Figure 2. Such an axial configuration as this might be occur in a

village on a hill, such as the famous Porlock Hill, outside the village of Porlock

(Figure 3). Surely this is an example where the algorithm should allow for angles

greater than 90°. Yet by simply rearranging the relative positions of the same axial

lines that appear in Figure 2, but crucially not altering the angles between the lines

nor their topological order we can produce the shallow-angled, meandering street

illustrated in Figure 4. This configuration begins to resemble the meandering, arte-

rial roads described in the preceding paragraph.

If the above three figures are identical in terms of fractional angular analysis,

are we therefore condemned to never being able to accurately represent the axial

Figure 2. A Hypothetical

Switchback.

Figure 3. Porlock Hill, Somerset
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configurations in Figures 2 and 3 as being distinguishable from the example of Fig-

ure 4? This paper provides a solution to this dilemma by arguing that we are in fact

limited by calculating only one value to each axial line.

3. Axial depth from an origin

An interesting question to ask, in relation to the dilemma posed in Section 2, is

whether we are therefore committed to having only a single axial depth from any

given starting point in a graph? One approach to this question is purely algorithmic.

Let us consider a simple implementation of a depth finding algorithm (More effi-

cient algorithms such as Dijkstra4  exist (Gibbons, 1994) but they all share the same

flaw, that of being ignorant of ‘direction’). In the next paragraph, we can briefly

examine the pseudocode5  for a recursive implementation of a simple depth finding

algorithm.

This implementation is successful if all depths are set initially to infinity,

except for the starting node, which must have depth of 0 or 1. For a large, ringy

system a given node may actually be visited several times, with its depth being

reduced to its minimum at each visit. Notice that it is typical of such implementa-

tions that only the depth of a node is stored by the algorithm and that there is a

tendency to ignore the source-path of the depth. Such an approach is necessary in

the case of integration as used in traditional space syntax analysis. For example, in

Figure 5, line d has a depth of 2 steps from line a and lines b and c both have depths

of 1. Which, therefore, is the ‘parent’ of line d’s depth, line b or line c?

Figure 4. The Same Set of

Axial Lines Perceived as

Being Connected Shallowly.

recursivedepth( startingnode , depth )

{

for each node n from startingnode

if depth[ n ] > depth +1 then

depth[ n ] = depth + 1

recursivedepth( n, depth + 1 )

end if

next node

}

Figure 5. Another Sample

Axial System.

line b line c

line d

line a
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4. Choice

Choice is a measure that has existed for some time. The original concept was to

create a graph measure, which had a more explicit link between the conceptual

behavioural-model of the pedestrian and the larger scale effects. This is similar in

some respects to the origin destination matrices used in transportation models ex-

cept every axial line is simultaneously an origin and a destination. Although it has

been demonstrated empirically that there is a strong correlation between integration

values of axial lines and observed aggregate patterns of pedestrian flow, there is still

no unequivocal cognitive model that explains how the micro-scale decisions of pe-

destrians could give rise to such a correlation.

Conceptually the measure known as ‘choice’ is akin to stationing observers

on every axial line in the city. Imagine a person starting at an axial line and then

walking by the shortest route to another axial line. This process is repeated until our

fictitious subject has journeyed from every axial line to every other axial line in the

system. While they were performing this Herculean task, an army of observers posted

on each axial line were busy tallying up the number of times the subject was ob-

served to have passed them. If two or more equally short routes exist between a pair

of origin and destination lines then our pedestrian bisects himself forming two half-

pedestrians and each half travels down both streets simultaneously. Our half-per-

sons further sub-divide at any subsequent equally short route-sections. In fact, this

resembles a large-scale quantum experiment in which the pedestrian becomes a prob-

ability field passing though the urban system. Currently, the only implementation of

the choice algorithm forms the software application written by the author, called

‘James Choice
6

’.

The choice measure can be expressed algorithmically as the following:

For each axial line in the system startLine

For each axial line in the system which is not startLine called endLine

Find the shortest distance from startLine to endLine

being with Value of 1.0 and startLine as thisLine

if there are two or more equally short routes from thisLine To endLine

add the Value to the cumulative total for this line.

divide Value equally between them and use this fraction value.

repeat for each segment closer to endLine

if thisLine is endLine stop

next endLine

Next startLine
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Computationally choice is far more time consuming to compute than inte-

gration or even fractional integration. As the size of the system grows, the whole

process becomes much more intensive to compute
7

. Informally, choice has been

calculated for a sample of smaller systems and there appears to be no significant

improvement over integration. This opinion is largely hearsay and there have been,

as yet, no substantial experiments to establish the correlation improvement or re-

duction of choice compared to integration analysis.

The appeal of choice is the clear and explicit link between space and the

behavior of a pedestrian. The fact that choice does not predict patterns of urban

pedestrian flow any more accurately then integration (either traditional or fractional)

confounds those who might wish to promote a more simulation-based approach to

urban analysis (By, for example, introducing the concept of trip origins and destina-

tions). However, this paper asks the question of whether there might be some aspect

of the traditional choice algorithm that, if adapted for use in angle-sensitive sys-

tems, might promote choice over integration in terms of pedestrian movement pre-

diction.

The introduction of a fractional-style processing gives a new direction with

which approach the original choice algorithm. If, upon reaching a junction of two

equally short topological routes from a line A to a line B, the numbers of people

observed to take one route are divided by the ratios of the respective angles, then the

new angular choice algorithm might more comfortably reflect our intuitive route

choice selection. In the case of Figure 1, the fractional choice algorithm for a jour-

ney from line a1—a2 to line d would provide higher values of angular choice to line

b than to line c, as an intermediate step in the calculation. Compare this to the tradi-

tional version of choice, which would assign a value of 0.5 to lines b and c. While a

fractional approach may or may not improve the correlation with observed pedes-

trian movement
8

 this approach does marry two naturally affinitive partners: choice

and angular integration. However the approach of implementing choice in an angle-

sensitive system does reinforce the directional problem outlined earlier in this pa-

per.

5. Resolving the directional problem

In order to resolve the problem of taking direction into account, two solutions natu-

rally occur. The first of these is to segment the axial lines. This has been partly

attempted by Asami et al. (Asami, 2002). This removes the whole problem of estab-

lishing which angle is formed by an axial line crossing another line, as approached

from a given direction. The segmental approach, while quite viable, creates new

problems such as how to aggregate the values of the various line-segments. There



Storing directionality in axial lines using complex node depths

63.8

are benefits to having a single value of integration (fractional or otherwise) for a

single axial line. In a segmented system, which of the segments would best repre-

sent the parent axial line or would the integration value be the mean of all of a line’s

child segments?

The second solution is the subject of this paper. Normally depth is stored as

an integer (0, 1, 2, 3, 4 etc) in the case of traditional integration and as a real number

(0.0, 0.000001, 0.3332, 2.2322132 etc) in the case of fractional analysis. The solu-

tion of angular choice depends on storing depth as a mathematical complex number

with both real and imaginary components.

Complex numbers were invented by William Rowan Hamilton in 1843. The

original intent was to provide a mechanism to calculate the square root of a negative

number. A complex number consists of a real part, which resembles our usual number

system and an ‘imaginary’ part which represents multiples of i, where i stands for

the square root of minus one. In essence, a complex number exists only partially on

the real number line. A complex number might be written as,

(45 + 12i)

Where i2 = -1. In this context, we can use complex numbers to represent a

vector or a direction. The mathematics of complex numbers permits us to add, sub-

tract, multiply and divide complex numbers in the same manner that traditional

mathematics allows us to operate with non-complex numbers (for example, calcu-

lating step-depths in traditional axial maps). Using a complex representation, we

can store the depth of a line as a complex value and hence retain a ‘direction’ asso-

ciated with that particular depth.

By using complex numbers for storing the step depth from an origin, we can

maintain the direction that facilitated the minimum depth calculation. In other words,

we have a mechanism to preserve the ‘direction’ (as a vector) from the starting

node; this gives a direction with which we can combine an angle-sensitive system in

which depth may be more than 90°. Another way of phrasing this is that the use of

complex numbers permits the algorithm to maintain a sense of direction though the

graph of the axial system.

Algorithmically it might function as follows. Let the variable ddepth (direc-

tional depth) be a complex number that represents direction. The line begins in both

directions for each direction ddepth from starting node n.
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The key component of the above function is the computation of the angle

between the direction of the axial line (node n in the graph) and depth ddepth. By

storing the axial line as a vector, the operation of the dot product will provide the

increase in angular depth. This increase in angular depth and the resultant direction

can be stored in the complex-number value of angular depth, and is passed on down.

Consider the case of performing these calculations for Figure 1.

The calculation first begins from point a1 and considers movement in the

left-to-right direction. The depth of line c is considered and the change in angle is

more than 90° (although it would be less than 90° in the right-to-left alternative

starting point, a2). The change from line a to line c (the intersection of the two lines)

is then stored in the value for line c as both the depth and the angle (pointing towards

the top of the page, in this case). The depth of line b is computed in the same manner.

At the point of transition from line c to line d the angle is unambiguous. When

compared the angle from point a2 to line b to line d the value is clearly less.

Upon repeating this process with the alternative right-to-left direction (a2 to

line c to line d) the resulting value is now smaller and the route a2 to line b to line d

is the larger. This ability to start a hypothetical route from both directions clearly

permits all possible depth calculations. Each starting axial line would then have two

depths associated with it, which may or may not be identical depending on the

configuration of the lines. This difference, which is dependant upon the starting

direction, may or may not also serve to be an interesting symmetry measure of the

system.

6. Conclusions

By storing the intermediate-stage step-depths as complex numbers, it is therefore

possible to simply extend the current generation of space syntax software to be able

to store the associated directions of movement. This process more naturally reflects

the concept of a ‘path’ or a ‘trail’ though an urban system than any of the current

recursivedepth( startingnode , direction ddepth )

{

for each node n from startingnode

if depth[ n ] > depth + angle(ddepth, n) then

depth[ n ] = depth + angle(ddepth, n)

recursivedepth( n, depth + angle(ddepth, n) )

end if

next node

}
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measures or algorithms are capable of doing. Further work needs to be performed

to merge this measure with other path-dependant algorithms such as choice to the

concepts of angular fractionally. In addition to this, some work remains to be done

in order to implement this computational approach in a user-ready software package.

Such a software program would allow fractional integration values and fractional

angular choice to be computed with acute angles. If such a piece of software could

be created, then comparisons would need to be made between choice, complex

choice, integration, fractional angular integration, complex angular integration and

real world observations in order to determine which might represent empirical

pedestrian observations most accurately. Finally, further research would need to be

conducted to begin to broach the problem of how to compute a relativization formula

in the domain of complex-depths.

Notes

1 
 See section 5.0 for a definition and algorithm of choice.

2 

This process was implemented by a program called MeanDA (Mean Depth Angular).
3 
A road, trail, or railroad track that follows a zigzag course on a steep incline.

4 

Djikstra’s algorithm (named after its discover, E.W. Dijkstra) solves the problem of finding the short-

est path from a point in a graph (the source) to a destination. It turns out that one can find the shortest

paths from a given source to all points in a graph in the same time, hence this problem is sometimes

called the ‘single-source shortest paths’ problem.
5 

Pseudocode is a detailed yet readable description of what a computer program or algorithm must do,

expressed in a formally styled natural language rather than in a programming language.
6 

The title of the software ‘James Choice’ was intended to be a whimsical pun on the name of the author

‘James Joyce’ because of the myriad of narrative paths within his novel Finnegans Wake.
7

 Choice is an n3log(n) process in comparison to integration and fractional integration which are both

n2log(n) calculations, where n is the number of lines in the system.
8

 Such empirical research has yet to be conducted but would be a fruitful area for future research into

this topic.
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