
31.1

Proceedings . 4th International Space Syntax Symposium London 2003

31

Keywords

time, movement,

shape perimeter,

rhythm

PsarraS@Cardiff.ac.uk

Top-down and bottom-up characterisations of shape and

space

Sophia Psarra

Welsh School of Architecture, UK

Abstract

This paper explores methods for establishing an integrated analysis for the description

of shape and spatial properties. Its aim is twofold: first, to test the analytic methods

against shapes of simple and moderate complexity.  Second, to account for ways in

which shape patterns are revealed during spatial experience. The analysis quantifies

syntactic properties of shape perimeter focusing on the measures of connectivity

and integration. These are studied in two levels: the level of configuration seen as a

static notion and the level of configuration as a dynamic notion unfolding through

time. It is proposed that syntactic regularities of shape can be described as regularities

in the patterns of sequential information, or otherwise as regularities in the temporal

structure of information transmission.

“Almost instantly, I saw it – the garden of forking paths

was the chaotic novel; the phrase ‘several futures (not

all)’ suggested to me the image of a forking in time, rather

than in space. A full rereading of the book confirmed my

theory. In all fictions, each time a man meets diverse

alternatives, he chooses one and eliminates the others;

in the work of the virtually impossible - to disentangle

Ts’ui Pen, the character chooses - simultaneously - all

of them…Unlike Newton and Schopenhauer your

ancestor did not believe in a uniform and absolute

time…”

Jorge Luis Borges, ‘The Garden of Forking Paths’, Fictions, Penguin Books 1998.

Shape configuration and spatial experience

The distinction between shape and space centres on the notion of time. A shape is an

conceptual pattern that can be seen and grasped at once. On the other hand, space is

a structure of visual fields that are seen gradually through movement. The difference

between a pattern that is understood instantly and a pattern that unfolds in sequence
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is what distinguishes architecture, literature, music and film, from the visual arts.

But whereas the other forms of serial art are purely based on time, architecture

combines the sequential nature of space with the simultaneous framework of shape.

However, most analytical accounts divide between top-down descriptions of

geometrical order and bottom-up approaches based on spatial relations. Space syntax

describes layouts as patterns of permeability and visibility connections experienced

from the ground. Nevertheless, it does not account for shape properties or the ways

in which these properties are accessible during spatial experience. The purpose of

this paper is therefore twofold: First to explore ways in which a single analytical

framework can be achieved for the quantification of shape and space. Second to

describe the ways in which shape and space are sequentially linked through the

notion of time.

Time can be defined in two ways: as succession and as order. Time as

succession is a sequence of states that unfold one after the other like a narrative.

Time as order consists of patterns by which the episodes in the linear chain are

linked across the sequence. Structural relations like rhythms and symmetries establish

periodic patterns that link elements outside their position along the line. An enfilade

sequence of spaces is an example of time as succession, figure 1a. In a classical villa

moving from one enfilade series to the one at the opposite side we experience a

group consisting of two rooms that are repeated three times, or a group of three

rooms that occur twice. The symmetry on the back to front axis can be seen from the

central space, but can be also inferred through the periodic recurrence of spaces.

Time as order is defined by these rhythms and is experienced through time as

succession. Symmetry in itself is an absolute notion that exists independently of the

sequence through which it is presented. However, its retrieval is time based and

sequential time is the only medium in which it can be seen.

In an open plan, rhythm enters our experience not through individual rooms

that are repeated in sequence, but as surfaces that are gradually synchronised. Figure

1b-e shows a series of isovists drawn from each corner of the space1. Figure 1f-k

presents groups of two overlapping isovists. Each isovist in a group shares two

whole surfaces and a part of the surface adjacent to those that are seen as wholes. As

we move clockwise from the bottom left corner, certain surfaces remain constant

while others disappear from vision. Those that stay constantly visible in all isovists

are marked in figure 1l. Their property to connect views from different locations

and their symmetrical positioning are confirmed only after all corners are visited.

Unlike the enfilade arrangement, symmetry is grasped not through a repetition of

identical enclosures, but through the repetition of identical patterns of overlap amongst

identical isovists.
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Isovists and their overlap are at the centre of space syntax research (Turner

and Penn 1999) and similar analytic developments (Peponis et al 1997). Although

these studies make an important contribution to the description of space, they

approach it mainly through the notion of configuration. We propose that configuration

accounts for global and local properties, but is not equivalent to spatial experience.

The former is an invariable notion. The latter is a structure of visual patterns that

vary or repeat themselves periodically in time. It will be suggested that configuration

enters spatial experience based on temporal patterns in the structuring of visual

information.

Measuring shape perimeter using local properties

Our analysis starts by looking at the syntactic properties of shape perimeter

represented by a set of square units that are joined facewise. Using a GIS computer

model developed at the Welsh School of Architecture we measure the connectivity

value of each square as the average set of perimeter points visible from that location.

We can thus provide a categorisation of shapes based on syntactic properties of their

surface, figure 2a-k.  Studying configurations with varying degrees of occlusion and

symmetry in previous research led to the following observations: First the distribution

of values, shown in different shades of grey, captures the geometrical regularities in

the shapes. Second, changing the metric properties or symmetry in a shape we affect

the inter-visibility of its locations. Comparing figure 2c with its asymmetrical variation

shown in figure 2d for example, we see that there is a slight increase in the values

from the symmetric to the asymmetric arrangement, Table 1.  These differences

confirm common intuition in terms of the effect of asymmetry in creating

differentiation in design.

b c d e

f g h i j k

l

�

A

B

C

A

B

C

a

Andrea Palladio

Villa Malcontenta

Figures b-e show isovists from each of the four corners of the shape.

Figures f-k show the area of the overlap of two isovists, each from a

corner. Figure ‘l’ shows the area of overlap of all isovists.

Figure 1

(a, b, c, d, e, f, g, h, i, j, k, l)
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The next step in the analysis is to represent the transitions of values at a fine

level of detail using a graph that plots connectivity for each grid square starting

from the top left corner and progressing clockwise, figure 2a-k. The horizontal axis

represents the sequence of cells. The values on the y axis map the connectivity

levels for each point as an average of locations included in its isovist. They also

provide the extent to which each location is seen by other perimeter points, as the

property of visibility is interchangeable. Fluctuations of the graph on the y axis

capture the changes in connectivity value and the changes in the extent to which

each point survives in serial vision.

We can study these graphs by looking at the patterns of fluctuation of the

curve along the vertical direction. These account for changes in connectivity values

with low and high values within each peak and trough respectively. The level of

differentiation amongst values can be calculated using the measure of standard

deviation (v-value). High standard deviation suggests high degrees of dispersion or

differentiation amongst perimeter locations. In Table 1 we see that from figures a to

d v-values increase indicating increasing degrees of differentiation. In figures e-i

these values generally decrease showing high levels of stability. Shapes like figure

2a are stable along a great extent of the perimeter length at the top end of the scale of
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mc-value i-value v-value R-square

21.86�70.24 16.86 0.96b

21.55� 69.93 16.51 0.97a

19.2967.31 18.74 0.98c

19.3267.4 18.86 0.98d

8.08 44.78 12.15 0.91e

9.16�51.48 13.24 0.82f

 21.8175.22 10.32 0.95g

9.452.33 8.30 0.92h

 6.60 39.49 8.14 0.62i

Figure 2 (a, b, c, d, e, f, g, h, i, j, k)

The distribution of connectivity values captures the

geometric regularity in the shapes. The transition

of values is shown through graphs starting from the

top left corner of the shape and plotting values

clockwise.

Table 1
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connectivity values. In contrast, shapes that are characterised by high degrees of

occlusion like in figure 2b, 2g, 2j-k have low v-value and are therefore stable at the

bottom end of the scale. Low v-value is an outcome of occlusion and geometrical

symmetry in a configuration and expresses the extent to which repetition exists in

the pattern of visual information.

Measuring shape perimeter using global and local properties

The measure of connectivity can sufficiently describe simple configurations. In more

complex shapes it is essential to use global measures like integration. This accounts

for how close each perimeter point is to every other location (Hillier 1994). The

calculation of integration is based on graph theory using the notion of mean depth

between each element and every other element in the graph. In our analysis points

which are inter-visible, i.e. those found in the same isovist, are situated at the same

depth level. Points that are not inter-visible are one depth level apart and so on.

Similarly to the connectivity values integration generally decreases from the

first to the last figure, indicating the effect of cutting into the shape and introducing

depth in the configuration, Table 1.  Figures 3a-i show corresponding graphs of

connectivity and integration values We see that the two graphs follow a roughly

similar course along the x axis rising and falling at similar positions. This indicates

that every time a point is more connected it becomes also more integrated. Another

way to study this relationship is to produce ‘scattergrams’ for the two variables,

figures 4a-i. Each point in the scatter represents a perimeter square unit. Its location

on the x axis is given by its integration value, while that on the y axis by the

connectivity value. We see that in all figures the plotted points are distributed along

a curved line. This means that although the two variables increase and decrease

together, their rate of change is different for different parts of the curve. At the

bottom range of values connectivity rises faster than at the top end. Integration behaves

in the opposite way, increasing slowly at the beginning and faster at the other end of

the scale.

These results show that in the segregated parts of the shape there is more

change in terms of local scale information than information about the configuration

as a whole. In contrast, in the integrated areas there is little differentiation in terms

of what is visible locally and more differentiation in terms of where each point

stands in relation to the whole.

The reason behind the difference in the two rates is illustrated in figure 5a,b.

In the first figure the incremental increase in the perimeter of the isovists drawn

from points that have a low connectivity, and integration value is lower than the
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increase in the perimeter of isovists drawn from integrated positions. As the reflex

angles intrude more into the central area of the shape, figure 5b, the increase in the

perimeter of the isovists drawn from respective positions and consequently the rates

of change of connectivity and integration will tend to become more similar. Looking

at the figures 4e-i we see that apart from figure 4g the points cluster along a line that

has a much shallower curve indicating more similar rates of change. We also see

that the correlation is weaker than previously as there are points at the bottom left

side of the scatter that are positioned above and below the regression line.

This is confirmed by the R-square value that measures the strength of a

correlation, Table 1. This value decreases in general from the first to the last figure.

An observation that follows from this is that as we cut into the shape we affect the
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Figure 4: Scattergrams showing cor-

relation between connectivity and in-

tegration. The R-square value de-

creases with increased levels of oc-

clusion and is affected by metric

properties of the shape.

Figure 3: Graphs showing mean con-

nectivity values (black line) and inte-

gration (white line) at a fine level of

detail. The graph line starts from the

top left corner of the shape and

progresses clockwise. Connectivity

and integration tend to follow a simi-

lar course rising and falling at the

same locations.
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relationship between what is seen locally from each point and its position in the

configuration as a whole.  However, in most shapes at least eighty two percent (82%)

of the differences between perimeter points in terms of their connectivity values are

due to their relation to every other point in the shape captured by its level of

integration.

The decrease  in the R-square value for figure 4i can be explained by taking

a closer look at its scattergram. The points that lie below the line at the bottom left

side of the scatter occupy the horizontal sides of the H shape. These points have

connectivity levels that are lower than their integration suggests. The difference in

the two variables is produced by the reflex angles.  Moving into the area of the shape

they reduce their integration levels, but they also reduce to a greater extent the

perimeter length visible from those positions. This result can be more clearly

demonstrated by looking at the perimeter graph for this figure, figure 3i.

We see that the peaks and the troughs in both curves occur at corresponding

locations.  On the other hand, the decrease or increase of values in adjacent troughs

for each of the two variables are in an inverse relationship. In the connectivity graph,

shown at the top, they progress from ‘low’ to ‘lower’, to ‘low’. In the integration

graph they move from ‘low’ to ‘higher’ to ‘low’. This result shows that apart from

the reflex angles, the central part of the H shape, integrates more than it connects. It

also shows that the relationship between ‘before’ and ‘after’ with respect to these

angles is different in one measure than in the other.

Our observations can be summarised as follows: First, there is an impact of

metric properties on the values of integration, connectivity and on their relationship.

Second, a poorer correlation like the one in figure 4i shows that what is strategically

located in terms of global scale information does not precisely correspond to what is

strategic at the local level. Third, as we affect the correlation between connectivity

and integration, the sequential patterns in the transmission of information with respect

to each of these properties become different from each other.

A   B

A   B

A

B

A B

a b

Figure 5 (a,b):  Isovist radials pro-

duced from segregated (bottom) and

integrated (left) points. In figure ‘a’ the

increase in the perimeter of the

isovist from the segregated positions

is smaller than the increase from the

integrated locations. In figure ‘b’ the

difference between the isovist perim-

eters becomes smaller.
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Time captured by the rhythms in the horizontal distances between the peaks

has a similar pattern for both variables as they are both at their highest levels in

similar locations. Time represented by the sequence of peaks and troughs has

similarities in relation to the peaks and differences in the alternation of heights of

subsequent troughs. Integration and connectivity can be thought as two tracks of

information that are either parallel, exhibiting the same frequencies and rhythms, or

partly aligned and partly contrasted, like ranges of singing voices that move into a

rising direction together for certain parts of the melody while moving in the opposite

direction for others.

Using the shapes in figure 6  we will now focus on the impact of metric

properties in the relationship between the two measures in asymmetric arrangements.

We observe that the R-square value decreases as the shapes become increasingly

more complex and more hollowed out. In the last figure it drops to 0.61, a value that

is close to that given in figure 4i. However, the plotted points in figures 6b-d tend to

cluster along a line rather than a curve. A number of smaller clusters are also formed

that cross the main regression line at a steeper angle indicating that for these locations

connectivity is stronger than integration, something that will be discussed later in

greater detail.

Figures 7a-c are variations of figure 4i produced by adding a third component

of progressively decreasing perimeter length to the H shape  Examining the data we

observe that the decrease  in the length of the vertical components results in an

increase of connectivity and integration values. From figure 4i to figure 7a the R

squared value drops, while from figure 7a to figure 7c it increases dramatically to an

almost perfect correlation. In figure 7a the connectivity values of the three vertical

Connectivity  
Integration
R-square

44.45

8.37
0.97

Connectivity  
Integration

R-square

25.15

4.25
0.61

Connectivity  
Integration

R-square

32.32
5.51
0.87

Connectivity  
Integration
R-square

27.45

4.03
0.80

a

b

c

d

Figure 6: Connectivity and

integration in irregular arrange-

ments.
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components of the shape rise disproportionally to their integration levels. In the

other two shapes they retain a good relationship with where they stand in relation to

the rest of the system.

These results confirm the impact of size on the ways in which parts relate to

the whole. Looking at these figures as two dimensional configurations we see that

the metric variations affect the relationship between the one dimensional and the

two dimensional extension of the shapes. In figure 7a the three vertical elements

extend along one direction contrasting the central spine that holds them together.

The decrease in their size shifts the shape balance towards the horizontal extension.

The increase in the R squared value confirms this harmonising effect relating the

results of this analysis with common design intuition.

Linking the observations made for figures 3a-d, 6a and 7b-c we can conclude

that simple configurations, moving towards convexity2 or linearity, tend to approach

a perfect relationship between integration and connectivity or between the local and

global scale. Space syntax research has associated the relationship between

connectivity and integration with spatial intelligibility. This is because it captures

how local parts in a layout can inform us about their relation to the entire configuration

(Hillier 1996). The results of this analysis suggest that a good correlation is an

indication of regularities in the rate of change, or in the temporal patterns in the

transmission of local and global scale information. Looking at this rate we have

observed similarities and differences between the two levels of information and for

different parts of the shape. These account for the extent to which parts retain a

balanced connection to the whole. The capacity of the correlation to suggest good

levels of intelligibility of shape perimeter remains to be tested against more complex

configurations in the section that follows.

Connectivity  

Integration

R-square

30.75

5.40

0.48

Connectivity  

Integration

R-square

34.64

6.07

0.95

Connectivity  

Integration

R-square

54.33

10.25

0.99

a

b

c

Figure 7: Metric transformations

of shapes
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Examining some real examples.

We now move to an analysis of some real examples. These are Aalto’s Maison Carre,

Frank Lloyd Wright’s Fallingwater, Louis Khan’s Laboratories, University of

Pennsylvania and Aalto’s Technical University, Otaniemy, figures 8a-h. Table 2

presents the numerical results for this sample. Maison Carre and Falling Water have

the highest connectivity and integration values followed by the other two buildings.

In terms of the standard deviation for connectivity values (vc-value) Fallingwater

has the highest degree of differentiation (16.46) followed by Maison Carre (14.90).

In relation to the standard deviation of integration (vi-values) Maison Carre (4.78)

has slightly higher levels of differentiation than Fallingwater (4.43). The last two

cases present the highest degree of stability having considerably lower but closely

similar standard deviations for both connectivity and integration (5.36, 1.15 in Khan

and 5.39 and 1.23 in Aalto).

Figures 9a-d show the corresponding scattergrams for these shapes.. Maison

Carre and Fallingwater appear similar to the shapes examined in figures 4a-d and

7b,c in that the plotted points are tightly distributed along a curved line. As previously

explained, this pattern of distribution indicates a differentiation in the rate of change

of values along different sections of the curve. We see that these buildings are

Louis Khan(

Alvar Aalto(

Connectivity 13.34 Integration 4.57

Alvar Aalto(
Maison Carre

Frank Lloyd Wright(
Fallingwater

Connectivity 17.20 Integration 5.12

Connectivity 57.26 Integration 12.81

Connectivity 54.38 Integration 11.35

a b

c d

e f

g h

University of Pensylvania

Laboratories

Technical University, Otaniemi

mc-
value

i-
value

vc-
value

R-
square

vi-
value

57.26 12.81 14.90 4.78 0.97

54.38 11.35 0.9116.46 4.43

13.34 4.57 0.695.36 1.15

17.20 5.12 0.555.39 1.23

Figure 8:  Distribution of connectivity (left) and

integration (right) values along the perimeter of

the buildings.

Table  2
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characterised by high degrees of differentiation both in terms of connectivity values

for the entire perimeter length (v-values) and in terms of both connectivity and

integration for shorter trips within the occluded and the open areas of their shape.

The scatters for Khan’s Laboratories and Aalto’s Technical University show

that the rate of change with respect to the entire sample of perimeter locations tends

to stay the same as points tend to be distributed along a straight line.  However, in

both buildings there is a series of clusters that form linear scatters in themselves

crossing the main regression line at a steeper angle. This means that for smaller

perimeter sections connectivity is stronger than integration. The individual clusters

in Khan correspond to the square shapes at the left, the bottom and the far right end

of the configuration. In Aalto’s Institute of Technology the linear clusters correspond

to the four shapes on either side of the long back to front axis and to the narrow

shape at the top left side of the building. These perimeter sections are experienced

as separate sub-complexes that are more locally connected than globally integrated.

The intensification of connectivity over integration is based on the geometric

and metric properties of these buildings. Both configurations consist of clearly

identifiable shapes demarcated by reflex angles that are in close proximity to each

other. This means lower levels of inter-visibility and consequently lower levels of

integration. However, within these areas connectivity values are high as a result of a

considerable perimeter length visible from their locations.

Figure 9: Scattergrams and

graphs of connectivity (black)

and integration (white) values.
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The R-square values indicate good levels of intelligibility in the first three

cases in general. However, there is a greater extent of intelligibility in the first two

buildings as their integration levels are much higher. The R-square value in Khan

(0.69) suggests that connectivity is a good indicator of the global structure. However,

lower levels of integration show that the global scale is overall less intelligible.

Finally, in Aalto’s Technical University there is less intelligibility in terms of the

system as a whole and in terms of the ways in which local scale exploration guides

us in the understanding of the overall configuration.

We should clarify that an evaluation of these buildings in terms of intelligibility

is not complete as different kinds of syntactic analysis should be also employed for

this purpose. Examining the axial structure would illuminate other important

properties like the long axes that extend from one side to the other establishing

global scale relations. Alternatively using a grid of both spatial and physical locations

would enable us to study the ways in which the perimeter is experienced from different

parts of the layouts.

Shape configuration as a notion of time

We have examined these buildings measuring syntactic properties of their perimeter.

This analysis enabled us to describe them as shape and space configurations under a

single analytical framework. We will now move to the second objective of this paper

and explore how syntactic properties can be studied from the point of view of

sequential spatial experience. To this end we produce graphs plotting integration

and connectivity in a sequence, figures 9a-d. A first look at these graphs shows that

Khan’s Laboratories have the highest level of regularity in the whole sample. We

see that the line rises and falls at similar distances on the y axis and at regular intervals

on the x axis. In contrast, Fallingwater seems to possess the lowest levels of repetition.

This is because it is the only example in which the graph line does not fall in low

troughs in the same frequency as in the rest of the cases. These two buildings therefore,

offer the most contrasting pair for comparison. For this reason our analysis will

mainly focus on their graphs, figure 10a-c

If we consider each point on the x axis as being a physical location as well as

a time segment in a route progressing along the perimeter, then this axis represents

time as succession. The value of each point on the y axis captures its position in the

configurational pattern expressed by its integration and connectivity levels. Points

that carry similar weight by having similar values have a syntactic symmetry by

virtue of either being at the same depth level or having the same number of

connections, or by both possibilities. These points are conceptually linked together

by the property of holding a similar position in the configuration. Mapping these
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locations on different bands defined by ranges of values that are close together,

figure 10a-c we can produce a representation of frequencies of values, or of their

recurrences within certain value categories expressed by the white vertical lines.

These lines represent values at peaks and troughs as these account for the maximum

and minimum connectivity levels in each band.

This kind of representation captures the following: First, a categorisation of

syntactically symmetrical elements into groups expressed by the horizontal bands.

Second, a number of recurrences of these elements represented by the number of

lines within each band. Third, the patterns of sequences of similar values mapped by

the horizontal distances between subsequent lines, or the periodic structure of their

recurrence. Finally, the ways in which these sequences relate to each other expressed

by the time required for their lines to repeat, or otherwise their period.
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Figure 10 (a, b, c):  The connectivity graphs (mapping perimeter locations

in a continuous linear sequence) have been dissected into horizontal bands

according to different categories of connectivity values. These values are

represented by the white lines defining a sequence of non adjacent pe-

rimeter positions in each band.
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This graphic representation disassembles value categories from the original

sequence and re-orders them into higher order sequences according to syntactic

similarity. We can propose that this representation captures time as a notion of order.

This is because it records patterns holding elements together beyond physical

proximity or beyond the linear sequence in which they are seen. We can study time

as order in two ways: First by looking at the frequency of elements that carry similar

syntactic weight in the configurational pattern. Second, by examining the distances

between these elements or the length of time travelled between positions of

syntactically equal weight.

We should clarify that as the original sequence on the x axis is defined by an

assumption of a peripheral route, different routes could be also studied. These can

be defined according to building use, or occupation patterns, or actual routes people

take in layouts. In this analysis we will concentrate on the hypothetical path we have

defined only, which in real life situations might be close to a route along surfaces in

gallery rooms. We will also mainly focus on connectivity values. This is because the

two variables have a good correlation, falling and rising at similar positions, so that

observations made for the one can also account for the other. The difference in the

rate in which the variables change as indicated by their scatters forms a subject of

further investigation to be addressed by research in the future.

Comparing figure 10b with 10c we see that there are four sequences in Khan

and five sequences in Fallingwater. Moreover, there is a greater extent of frequency

of values within each band in the former than in the latter. Therefore, Khan’s

Laboratories are characterised by a greater deal of occurrence of identical values

and over a larger number of perimeter points. Recurrence of a syntactic symmetry

can be seen as an instant of ‘temporal symmetry’, in the sense that an identical

pattern repeats in time. In this respect, the shape perimeter in Khan is experienced

through a great extent of temporal symmetries linking together a large number of

elements that have a low value and therefore, a weak position in carrying information

about the relationship between the parts and the whole.

We now move to examine the sequences of intervals in each band. Starting

with Khan, we see that there is a periodic structure of horizontal distances that

possesses a certain level of regularity in all bands. In Fallingwater the only pattern

observed concerns the symmetrical positioning of the third line in the first band

with respect to the two lines on its other side. In Khan a syntactic symmetry in terms

of identical values is combined by a strong regularity in terms of the lengths of time

travelled between them. In Fallingwater the temporal structure is weaker as there

are fewer repetitions of values and almost no regularity in their re-appearance.
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In order to examine the relationship between the periods of different series

we need to define the unit of measurement. If this is taken as the widest interval of

the first series we see that in Khan as the first line in this series moves to its second

position covering a distance of 1, the first two lines in the second series move together

for a distance of 1/8, while the first two lines of the third series cover a distance of 1/

32. For the largest part of the third series the two lines move for a distance of 1/16.

Thus, for the first three bands of values the periodic cycles decrease in a regular way

showing that their movement, is proportionally phased like three pulses or three

music notes each of which is repeated for a time that is a proportional fraction of the

time it takes for the others to repeat3.

Therefore, there is a strong correlation between the values in each band and

the period of their cycle in the sense that every time a value increases the distance

travelled between subsequent values in the same series becomes longer. In Wright

there is no particular pattern in the relationship between values in different bands as

they consist of unrelated sequences, figure 10b. However, a closer look can reveal

some local symmetries embedded into their asymmetric arrangement. The second

line in the fourth band is at a distance of 2/3 from the second position of the line in

the first series (see the marked distances at the top of the graph). Similarly the third

line in the last band is at the same distance (2/3) from the last line in the first sequence.

Five values in different ranges are thus, disposed according to a property of bilateral

symmetry with respect to distances or timing of their occurrence. Looking at figure

10a we see that the high values correspond to the three reflex angles situated in the

large open area of the shape, (marked as 7, 14 and 19), while the low values are

represented by two other reflex angles in the top right part of the perimeter, (indicated

with the numbers 2 and 23). This observation points at an emerging diagonal axis of

‘just about’ symmetry that is partly implied by the distribution of colours, and partly

buried behind the irregularities in the perimeter of the shape.

Another observation concerns the relationship between the highest peak and

one of the lowest troughs corresponding to the points marked on the graph as 19 and

9 respectively. Their values are in a strong asymmetry in relation to each other as

they are at the extreme opposites of the connectivity scale. The distance of point 9

from the lowest trough to its left side, point 1, and the distance of point 19 from the

highest peak also to the left side, point 14, are equal.

The syntactic asymmetry between the two pairs of points combined with the

symmetry of intervals in their respective sequence shows that they are in a relationship

of ‘reflected synchrony’, like two persons simultaneously moving away from a line

in opposite directions. In terms of their position in the shape, point 9 and 1 are in the
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deepest recesses of the perimeter, while points 14 and 19 are situated on the two

reflex angles in the large area of the shape. The temporal pattern in the relationship

between the two pairs of points captures a symmetry in the directional movement of

the reflex angles and the recessed corners, the former moving along two diagonal

axes inwards, the other progressing along an horizontal axis outwards and in opposite

directions.

With these observations we can reach our conclusions for the two buildings.

The part of the analysis that dealt with shape configuration as a timeless notion

showed that Fallingwater is characterised by strong levels of integration and strong

levels of differentiation both in terms of the perimeter as a whole (v-values) and in

terms of the rates of change within low and high values (scatters). The analysis that

dealt with configuration as a notion of time showed that there is also a high level of

differentiation in the pattern of its transmission. Results also showed that in Khan

there are lower levels of integration and connectivity, a less tight relation between

the two and a high degree of stability of perimeter locations. In terms of the

configuration as a temporal pattern the analysis indicated high levels of regularity

or otherwise a stable temporal pattern of information.

Before moving to our final conclusion we discuss the theoretical dimensions

of the ideas presented in this paper. Intelligibility as defined by space syntax research

is based on the relationship between global and local configurational properties.

These can account for how simple or complex a layout is from a particular location

and what is the kind of experience at a local level with reference to the global scale.

By looking at the transformation of local and global properties from different parts

of a layout intelligibility already incorporates the notion of time as a sequence between

different states. However, it approaches spatial description as a totality or as an

absolute notion describing relations amongst elements independently of the temporal

sequence in which they are actually seen.

The notions of configuration and time in general are diametrically opposed.

One is an absolute concept describing abstract relations amongst elements, while

the other is a relative and dynamic entity consisting of a number of states in a sequence.

However, at the level of real experience time is the carrier of configuration. Different

kinds of realities relate the two notions in different way, often giving predominance

to the one over the other. In the visual arts, or when looking at two-dimensional

shapes, configuration takes over time by virtue of being immediately accessible. We

may say that we see paintings or shapes instantly, meaning in a very small fraction

of time, but in reality, provided that we account for one painting or one shape only,



31.17

Proceedings . 4th International Space Syntax Symposium London 2003

we see them within a time that is almost uniform in its context. This is because there

is no ‘before’ or ‘after’ that particular instant to establish the notion of temporal

succession.

In architecture, discontinuities in what we can see break both configuration

and time into separate states. Configuration becomes captured in a web of time that

unfolds serially. However, it also contrasts the linear motion of time by re-ordering

its events or its visual fields into higher order patterns and higher order time sequences.

It was explained how syntactic symmetry or regularity in its occurrence link different

temporal moments outside their positions as successive states. This re-ordering of

events is what creates the encounter between a synchronous (configuration) and a

diachronous notion (time). The field of their encounter is both static and dynamic.

Static because it is about abstract patterns locally observed, like syntactic symmetry,

and dynamic because it is in a process of reorganising these patterns into higher

order relations as new information becomes available.

We can therefore reformulate the definition of both time and configuration in

architecture and suggest that neither of the two is an absolute or a sequential notion,

a totality or an accumulation of individual instances. They both consist of relations

amongst contiguous elements that unfold in sequence and relations that operate across

distance. Configuration can be thus, approached as a description of time properties

and time as a description of configurational patterns. This analysis has showed that

by studying the ways in which configuration unfolds in time or the ways in which

the temporal structure exposes configuration we may begin to capture subtleties in

the description of both levels. We may also begin to describe the actual subject of

their structuring, i.e. spatial experience.

A final remark concerns the relationship between this analysis with an

analytical context concerning mathematical proportions in architecture. Traditionally,

studies of form have focused on harmonic ratios amongst architectural elements and

their isomorphic correspondence in music (Wittkower 1967). This study has attempted

to develop ways in which the study of rhythm, symmetry and differentiation can be

applied to patterns of visual fields expressed as syntactic properties of shape perimeter.

In this way, it might provide a foundation to extend the mathematical analysis of

architecture from the ‘surface’ level of architectural elements to the ‘deep’ level of

syntax.
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Conclusion

This paper does not attempt to provide a general approach that solves fundamental

problems of shape, space and time but to explore ways in which the three notions

can be linked together. Measuring properties of shape perimeter it uses methods for

studying shape configuration without relying on traditional definitions of geometrical

order. Looking at configuration as a temporal pattern it tries to study the ways in

which it enters our experience. We acknowledge that these methods are at an

embryonic level and that further research is required to validate their findings. It is

hoped that they might offer an alternative and systematic way to approach

conventional notions like symmetry, balance, and rhythm that have dominated the

intellectual history of formal description in architecture.
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Notes

1 The isovist tool was initially developed by Benedict and is defined as a polygon area visible

from a vantage point in space (Benedict 1979)

2 A convex space is defined as a space in which any two lines can be linked without crossing its

boundaries (Hillier and Hanson, 1984)

3 This pattern is akin to the proportional time value system employed in musical notation, i.e. a

semibreve (1), a quaver (1/8) and a semiquaver (1/16). We do not suggest that the analogy of the pro-

portional structure of the perimeter with musical time values was intended by the architect. The exam-

ple of musical notation is used to simply illustrate the role of time in other serial forms of art.
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