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0 Abstract
“Space syntax” has shown that spatial configuration can be described as a set of lines
covering all the areas of a layout and all the ways of moving around the one dimensional
and two dimensional boundaries that it comprises. This article proposes alternative
formal definitions of linear representations of spatial configuration and ways in which
they can be generated. The significance of these representations is briefly discussed.

1 “Space syntax” and the linear representation of spatial configuration
The aim of this article is largely theoretical. We are dealing with the analysis of built
shape and space in two dimensions, as documented in plans. Research associated
with “space syntax” establishes the significance of linear representations of spatial
configuration. Given this, we propose to explore the way in which such representa-
tions can be formally defined with greater rigor. We examine how they can be auto-
matically generated, at least in principle, because we take the ability to specify the
relevant procedures as a test of the clarity of our conceptualization of such represen-
tations. Finally, we briefly discuss the significance of linear representations in an
attempt to bring to light the relationship between geometrical and architectural
intuitions. Since “space syntax” has been our point of departure, and since the aim is
to contribute to the clarification of its mathematical nature, we will begin by a brief
review of relevant literature.

“Space syntax” has largely described spatial configuration as a set of lines that repre-
sent directions of uninterrupted movement and visibility and cover all the areas of a
plan and all the ways of moving around one dimensional (1-D) and two dimensional
(2-D) boundaries situated within it. These linear representations have been origi-
nally referred to as “axial maps”. It was proposed that axial maps can be derived by
drawing the longest straight line possible, and then the next longest until “all convex
spaces are crossed and all axial lines that can be linked to other axial lines without
repetition are so linked” (Hillier and Hanson, 1984, pp 99). This method of deriving
linear representations of spatial configuration is dependent upon the prior defini-
tion of a convex partition of space. The stipulated “convex map” of a configuration
was taken to comprise the fewest and fattest possible convex spaces needed to cover
all the area (Hillier and Hanson, 1984).

The original linear representations of configuration have been powerful tools in the
analysis of the social and cultural functions of space. They have been associated with
the discovery that spatial configuration is correlated with the distribution of move-
ment patterns and the probabilistic generation of encounter in urban areas (Hillier et
al, 1987; Peponis et al., 1989; Hillier et al., 1993); they have been used in the empiri
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cal study of the organizational use of space in buildings (Hillier and Penn, 1991;
Peatross and Peponis 1995) and the empirical study of the intelligibility of layouts
(Peponis et al., 1990). They have been applied to the analysis and interpretation of
historical evidence (Hanson, 1989; Markus, 1993). They have even been found fruit-
ful in the analysis of small building plans (Hanson, 1994). Most importantly, they
have been used as expert tools applied to the formulation, evaluation and reformula-
tion of designs on the ground (Hillier, 1993; Stonor 1997). At the first international
“space syntax” symposium, held in London in 1997,  23 out of  35 contributions refer
to axial maps in some way.

The above definition of axial maps is, however, dependent upon the prior establish-
ment of a unique and economic partition of a plan into two dimensional convex ele-
ments. This cannot be treated as an easy task.  In the literature on computational
geometry, we can identify algorithms that provide us with partitions of polygons into
the minimum number of convex sub-polygons, drawing diagonals only (Keil, 1985),
or also drawing lines which meet at internal intersections known as “Steiner points”
(Chazelle and Dobkin, 1979). These partitions are not always uniquely specified.
The main problem, however, is the fact that dealing with polygons which involve
“holes” has remained “intractable” (Suri, 1997).  In architectural plans, a “hole” arises
when we have a circulation loop around a set of walls in a building, or a set of streets
around an urban block in an urban layout. In addition, the original convex partition
(Hillier and Hanson, 1984), while initially appealing, cannot be formalized with math-
ematical rigor (Peponis et al., 1997). In other words, the original convex partition
cannot be treated as a well defined minimum partition, and cannot be consistently
drawn as a merely economic partition. Thus, it is desirable that we explore linear
representations of spatial configurations which do not presuppose an economic con-
vex partition, at least until such partition can be more conveniently specified.

More recently, a second linear representation of spatial configuration has been pro-
posed. This arises by drawing all lines that connect vertices without intersecting wall
surfaces, and by extending these lines until they meet a wall surface (Hillier, 1996).
This linear representation of spatial configuration can be completed according to the
relationships of linear visibility and accessibility between vertices, without explicit
reference to the convex structure of a layout. There is published evidence that “all
lines” maps will prove fruitful in various areas of empirical research on the use and
organization of space (Stonor, 1997; Penn, 1997). However, while “axial maps” in-
volve a small number of lines that can intuitively be taken to correspond to major
directions of movement, the “all lines” map includes a large number of lines that
have no equally obvious single intuitive interpretation: on the one hand, they clearly
represent the relationships of visual connections between vertices; on the other hand
they represent potential paths of movement, but do so by allowing a considerable
degree of redundancy.

Another difference between the “axial map” and the “all lines” map is evident; while
at first appearing technical, this may, upon further consideration, turn out to be of
theoretical relevance as well. The generation of “all lines” maps can be automated,
since we always have a finite number of vertices. All that is needed is to connect all
these vertices by pairs, to test which pairs can be so connected without intersecting a
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wall, and then to extend the connecting lines that satisfy this test until they meet a
wall. By contrast, the generation of the “axial map” has not yet been automated. This
initially appears to result from two difficulties, in addition to the problem of estab-
lishing an economical convex partition as a basis for determining the linear map.
First, there is the difficulty of inventing algorithms that can find “the longest line
that can be drawn without intersecting a wall”, and continue to produce lines until
“all connections have been made”. Second, there is the intuitive problem which arises
when we deal with sparsely built systems involving large open spaces, when many
alternative lines can be drawn if we insist that “all axial lines that can be linked to
other axial lines without repetition are so linked”. It is  no coincidence that most
published axial maps of urban systems represent dense systems where open spaces
are clearly delineated streets. This intuitive problem disappears when we are pre-
pared to deal with the “all lines” map. Thus, the easier implementation of the “all
lines map” as compared to the “axial map” points to some implicit conceptual ambi-
guities of the later, in addition to the purely technical issues involved.

2 An economic set of lines that see everything
The rest of our paper is devoted to defining three different linear representations of
spatial configuration which can be generated following routine procedures. Only the
third representation can be usefully compared to the “axial map” originally proposed
by Hillier and Hanson (1984). However, the comparison and contrast between the
three representations will serve to clarify issues that are relevant to the “syntactic
analysis” of configuration.

The first representation is to include a small set of lines such that if we move along
their length looking around 360o at every stage, we can see all the wall surfaces that
comprise a built plan in their entirety. The issue of visibility is of obvious interest in
the analysis of architectural space. The set of lines that we seek to identify can be
taken to represent the linear visual core  of a built plan. Their arrangement provides
a useful basis for characterizing built plans.

We acknowledge that the problem of determining how many lines are needed so as
to see all surfaces in a plan is equivalent to the problem in computational geometry,
that of determining the number of necessary and sufficient “mobile guards” which
can see a “gallery” of polygonal shape (O’ Rourke, 1987). However the theorem that
În/4˚ guards moving along diagonals will be sufficient for all polygons with “n” verti-
ces has only been proved for polygons without holes. Our search of the literature has
not led us to identify already available solutions to our problem with regard to either
the sufficient number of lines, or the actual specification of the lines.

The rest of our argument will assume that all diagonals connecting vertices without
intersecting walls have been drawn, and that they have subsequently been extended
beyond their defining vertices until they meet a wall surface; lines that connect ver-
tices and graze wall surfaces are included in the set of diagonals. Our task is to find
ways that allow us to eliminate most of these diagonals and retain a small set accord-
ing to criteria that can be logically and experientially justified. For the sake of refer-
ence we will refer to the diagonals that are retained after the application of the vari-
ous tests that we propose as “movement lines”, or “m-lines”.
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A plan shape not involving curves will be treated as a set of wall surfaces extending
between edges and/or corners and only intersecting other surfaces at their endpoints.
Before all else, we must acknowledge the problem of determining the perimeter of a
plan shape. When we analyze buildings, the perimeter can always be treated as closed.
There will always be an uninterrupted ring of connected surfaces that surrounds all
internal areas. When we deal with settlement configurations, however, this is not
necessarily the case. We propose to deal with the perimeter of settlements in one of
three ways. First, we can draw the perimeter as a definite closed polygon when our
understanding of the object justifies it. Alternatively, we can surround the system of
building blocks by its convex hull, thus producing an artificial perimeter. Third, we
can imagine that the system of building blocks is set in a homogeneous carrier space,
such that a continuous circle of movement is possible at some conventionally fixed
radius. Any radial lines of movement are either simply stopped at their intersection
with that circle, or are held to be connected to each other through it, depending on
whether we want to treat the theoretical carrier space as a barrier or as a connector.
These possibilities are illustrated in figure 1.

Having determined that any shape can be treated as having an external boundary, we
are ready to proceed with the analysis. At this stage we need to introduce four defi-
nitions.

First, we will treat two points as visible from each other when the line that connects
them lies entirely within the plan shape and does not intersect a wall surface.

Second, we will define the visibility polygon (O’Rourke, 1987), or “isovist” (Benedikt,
1979), of a point as including all other points in a plan that are visible from it. Algo-
rithms for determining such visibility polygons are provided in the literature (El Gindy
and Avis, 1981; Lee, 1983; Joe and Simpson, 1987).

Third, we will define the “strong visibility polygon” associated with a wall surface, as
the one which includes all points which are visible from each of the points on the
surface in question. This is in contrast to a “weak visibility polygon” which would
include all points which are visible from at least one point of the wall surface.

Fourth, we define as the “e-partition” of a plan, the partition into convex spaces
which arises by extending the sides of all reflex angles until they meet a wall surface,
and also by drawing the extensions of all extendible diagonals which connect corners

Figure 1. Alternative definitions of

perimeter for the analysis of a

settlement layout
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which are visible from each other (Peponis et al., 1997). For the purposes of this
partition, the free standing edges of walls are treated as reflex angles of 360o ; conse-
quently, walls terminating at a free standing edge also get extended.

The convex spaces defined by the “e-partition” are stable with respect to visual infor-
mation concerning the vertices of a plan, whether corners or free standing edges.
While we remain inside such a convex space, referred to as an “e-space”, the same
vertices are visible to us. It follows that the strong visibility polygon of a wall surface
can be treated as the union of some number of “e-spaces”. Thus, we can proceed
assuming that we have determined the visibility polygons of all wall surfaces in a
plan. One way to do this, logically, is to find the visibility polygon from one point
within each e-space, say the centroid, and then to determine which visibility poly-
gons include a given surface, in its entirety, as part of one of their edges. The union of
all e-spaces whose visibility polygon includes a given edge is the strong visibility
polygon of that edge.

For the rest of our argument in this section, we will suppose that any areas which, for
the purpose of the analysis, cannot be reached, have been specifically marked, so
that the surfaces associated with them are not treated as parts of the plan shape. The
process of automatically recognizing the presence of isolated areas contained within
a larger plan shape can itself be automated; however, since it is of no intellectual
relevance to our present argument we will be contented with removing isolated areas
from consideration. Isolated areas include service cores in building plans, or private
premises in the analysis of settlement layouts.

Each of the diagonals of a plan shape, as defined above, intersects a number of strong
visibility polygons of surfaces, as shown in figure 2. We rank the diagonals according
to the number of visibility polygons that they intersect and select the diagonal which
intersects the greater number. We eliminate the polygons that have thus been inter-
sected. We then rank the diagonals once more, according to the number of remain-
ing visibility polygons that they intersect. We repeat the process until all visibility
polygons have been intersected by at least one selected diagonal. Where two diago-
nals intersect the same number of visibility polygons, but not the same polygons, we
include them both. Where two diagonals intersect the same set of wall surface vis-
ibility polygons, we choose the longest diagonal. This choice is aimed at maximizing
the chances that the selected diagonals may intersect each other. We thus select a
small number of m-lines.

Figure 2. (2a) The spatial convex

span of a wall surface intersected by a

line of movement  (2b) All wall

surfaces whose spatial convex span is

intersected by the same line of

movement
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The set of m-lines that we have thus selected at the end of the process is ranked
according to the number of visibility polygons intersected. We then proceed to test
whether an m-line of higher rank can be eliminated without leaving any of the poly-
gons unintersected. This test is not unnecessary since some combination of m-lines
of equal or lower rank may make any given m-line redundant. If several m-lines of
the same rank can equally be eliminated, one at a time, we eliminate the shortest one
first, and repeat the test. If several m-lines of the same rank and the same length can
equally be eliminated, one at a time, we randomly eliminate one and repeat the test.
We proceed until no further m-line can be eliminated. The end result provides us
with a small and economic set of linear paths that must be covered by a moving
subject so that all the surfaces comprising the built shape have become visible from
at least one point. We will refer to this set of m-lines as the “linear visibility map”.
The linear visibility maps for a number of examples are shown in figure 3. The exam-
ples include three buildings and three settlement configurations. In the case of set-
tlements, we have chosen to terminate the shape with a closed, deliberately drawn
perimeter. Table 1, rows 5, 8, 9 and 10 presents some basic information regarding

3a

3b

3c

3d

3e

3f

Figure 3. The minimum set of lines

that 'see' every surface in six plan

shapes
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those plans, so that we can express the number of m-lines needed to see everything
as a proportion of the number of vertices in the plan and also as a proportion of the
number of diagonals that can be drawn without intersecting a wall. In all cases we
need less m-lines than 10% of the number of vertices, and less than 5% than the
number of extendible diagonals, (which is the set of diagonals included in the “all
lines map” (Hillier, 1996), and finally less than 4% of the total number of diagonals.
In other words, table 1 establishes the level of economy that results from the applica-
tion of our procedure, with respect to all the indexes used.

Bldg 1 Bldg  2 Bldg  3 Area 1 Area 2 Area 3

1 # vertices 104 55 45 223 212 80

2 # non-extendible diagonals 34 13 34 240 298 78

3 # extendible diagonals 268 121 140 634 1104 285

4 # all diagonals 302 134 174 876 1402 363

5 # visibility lines 5 5 2 13 6 6

6 # access lines 7 9 4 37 34 13

7 # complete linear map 7 11 5 39 34 15

8 visibility lines / # vertices 0.048 0.091 0.044 0.058 0.028 0.075

9 visibility lines /

 extendible diagonals 0.019 0.041 0.014 0.021 0.005 0.021

10 visibility lines /

all diagonals 0.017 0.037 0.011 0.015 0.004 0.017

11 complete map lines /

vertices 0.068 0.200 0.111 0.175 0.160 0.188

12 complete map lines /

extendible diagonals 0.026 0.091 0.036 0.062 0.031 0.053

13 complete map lines /

all diagonals 0.023 0.082 0.029 0.045 0.024 0.041

The lines included in the linear visibility map, as described above, are a small and
economic set, but we cannot prove that they will be the minimum set for all cases.
This is associated with a rather more general problem of computational mathematics
known as “set cover”. Given a set of points and a collection of subsets, the problem of
set cover is to select as few as possible subsets so that every point of the original set
is contained in at least one subset. In our case, the set in question comprises all the
edge strong visibility polygons of a plan, and the subsets comprise those polygons
which are intersected from each one of the diagonals. It is generally understood, that
the set cover problem is hard to solve algorithmically and that we have to contend
ourselves with approximations, the best of which are based on “greedy algorithms”,
operating on principles similar to those that we have proposed (Fiege, 1996; Slavík,
1996).

The small and economic set of lines that “see everything”, as determined above, are
not necessarily intersecting each other so as to create a continuous pattern of con-
nections. In fact, for the examples presented, continuity of connections is only avail-
able in the case of the plan resembling Fallingwater (figure 3c). If we wish to obtain
the minimum set of connected paths that see everything, we may have to add some
additional lines. We can select these from among the m-lines of the full accessibility
map that will be presented below, following a similar procedure to determine what is
the smallest set of additional lines that are needed to connect the set of m-lines that
see all surfaces in their entirety.

Table 1. The numbers of lines of the

various linear representations of

spatial configuration compared to the

numbers of vertices and the numbers

of diagonals in six examples.
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3 An economic set of lines that get everywhere
The second representation is to include a small set of lines that get everywhere.
Thus, we must provide a plausible interpretation to the idea of “getting everywhere”.
The procedure for deriving the traditional axial map addresses this particular ques-
tion by requiring that we should cover all convex spaces. We will propose an alterna-
tive interpretation that does not require us to presuppose an economic convex parti-
tion. We take as our starting point the fact that the elementary act in the arrange-
ment of space is the construction of a single wall with two surfaces. This has the
implication of dividing the plane in two halves. As we add boundaries we produce
more complicated patterns of division and in turn, these can coalesce into more com-
plex relationships such as containment, juxtaposition or alignment. If division through
boundaries can be taken as the basic logical operation in the construction of built
space, then the idea of getting everywhere can plausibly be interpreted as getting on
both sides of each boundary that implies an act of division.

To formalize this idea we will introduce a definition. The “surface convex partition”
(Peponis et al. , 1997) is derived by extending all the free standing edges of walls and
all the sides of reflex angles, until they meet a wall surface. We refer to these exten-
sion lines as “surface lines” or “s-lines” and to the resulting discrete convex polygons
as “s-spaces”. As we cross an s-line, at least one entire wall surface either appears into
our field of vision or disappears outside it. We now propose that to “get everywhere”
means to cross every s-line. If we have been on both sides of every extendible sur-
face, we have, in an intuitive sense, covered a continuously connected plan shape in
its entirety; we have crossed all critical thresholds. Of course, we must remember
that areas that have been marked off as isolates are ignored in our present derivation
of the s-partition.

The procedure for deriving a linear path map that “gets everywhere” becomes rather
obvious. We take the original set of diagonal lines and determine the intersections of
each diagonal with the s-lines. We then rank the diagonals according to the number
of s-lines that they intersect. We select the diagonal that intersects the greatest number
of s-lines. We then remove the s-lines already intersected from the set of s-lines and
rank the diagonals again. We proceed in this manner until every s-line has been
intersected by at least one diagonal. Where two or more diagonals intersect the same
number of s-lines, but not the same s-lines, we select them all. Where two or more
diagonals intersect the same s-lines we select the longest only. This choice is aimed at
maximizing the probabilities that the selected diagonals will also intersect each other.
Where two diagonals are indistinguishable according to both the set of s-lines that
they intersect and according to their length, we randomly select one. The set of di-
agonals thus selected is ranked according to the number of s-lines that are inter-
sected by each diagonal.

We then examine the ranked set of selected diagonals in order to determine if any can
be eliminated, one at a time, without leaving any s-line uncrossed. This is not an
unnecessary test, because some combination of diagonals of equal or lower rank may
make any given diagonal redundant. Where a diagonal can be eliminated without
leaving an s-line not intersected by at least one diagonal, we so eliminate it.  If a
number of diagonals of the same rank can equally be eliminated, one at a time, then
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we first eliminate the shortest one and repeat the test. If several diagonals of the
same rank and length can equally be eliminated one at a time, we randomly eliminate
one and repeat the test. We check in this manner until no diagonal can be removed
without leaving an s-line not intersected by at least one diagonal.

The set of m-lines thus obtained can be treated as an economic linear map that gets
everywhere. The problem of “set cover” referred to earlier also applies here, so that
we can have no proof that the minimum set of lines will be selected in all cases.
Examples of such economic linear maps that get everywhere are provided in figure 4.

4a 4b

4c 4d

4e 4f

� 4g 4h

Figure 4. The minumum set of lines

that 'get' everywhere. (4a) (4c) (4e)

(4g) (4i) (4k) show the s-partition

lines, all of which are crossed by the

selected lines of movement shown in

(4b) (4d) (4f) (4h) (4j) (4l)
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These maps can be analyzed according to the usual methods associated with “space
syntax”. For the purposes of such analysis, two lines are said to intersect when they
cross each other, or when they meet at the same vertex of the plan shape. By examin-
ing the maps provided in figure 2, however, we note that they differ from traditional
“axial maps” in one critical respect. They do not always cover the non-trivial circula-
tion rings that are available in the system. Here, a circulation ring is said to arise
when linear paths intersect in such a manner that we can move from one line to
another, and after a number of such steps back to the original line, without ever
moving along any intervening line twice. Now, circulation rings will frequently arise
when three or more lines intersect each other in an open space. These rings, how-
ever, are intuitively trivial because they do not take us around a physical object. Non-
trivial rings, not only satisfy the conditions just described, they also take us around
some physical object, or, more precisely, around some of the surfaces that make up
the plan shape.

The realization that the maps described here do not necessarily take us around all
non-trivial circulation rings is rather fundamental. It attests to the fact that we can
“get everywhere” and still not capture the essential topological properties of a plan.
In order to obtain a complete linear representation of a spatial configuration, we
have to consider more closely the issue of non-trivial circulation rings. In order to
avoid confusion, and recognize the aforementioned facts, we will refer to the maps
described in this section as “partial linear accessibility maps”.

4 An economic set of lines that get everywhere and recognize plan topology
Following upon the remarks made in the preceding section, our last linear represen-
tation is aimed at recognizing plan topology. The presence of non-trivial circulation
rings and their number can best be determined as a function of the relationships
between wall surfaces. It is to these that we turn our attention now. A wall surface is

4i 4j

4k 4l

Figure 4. (continued)
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physically connected to another if it shares an edge with it. On plan, each wall sur-
face can be connected to two others at most. If we represent the pattern of these
connections as graphs,  using nodes to denote wall surfaces and lines to denote con-
nections, the overall pattern will take the form of one or more rings. This is easily
intuited if we recognize that, for the sake of example, a rectangular room with a
single free standing wall inside it, has six surfaces and generates two rings, one with
two nodes and one with four.

The basic number of non-trivial circulation loops is equal to the number of rings of
surfaces that are surrounded by interior space. The ring of surfaces that includes the
perimeter of a plan shape does not generate a circulation loop. For the sake of con-
venience, we will refer to a set of continuously connected wall surfaces surrounded
by a circulation loop as an “island of surfaces”. We are now looking for a test that will
allow us to achieve two things. First, we must determine whether the partial accessi-
bility map fully encircles every island of surfaces, or whether it must be expanded by
including additional m-lines. Second, we must determine where to add  the appro-
priate m-lines in cases where islands of surfaces are not already encircled. The algo-
rithm that we present below is not computationally efficient but it is logically el-
egant.

The logic of the test is as follows: For each surface of an island, we seek to determine
a polygon attached to  it and extending outward as much as m-lines and the disposi-
tion of other surfaces will allow. If the island is fully surrounded by m-lines, the
polygon will not have edges comprising surfaces not lying on the same island . If
such edges are discovered, we know that additional m-lines must be drawn.

The algorithm is as follows. We list all the islands, each with its set of surfaces. We
consider all the s-lines that are incident upon each surface of an island; we include s-
lines extending island surfaces as well as s-lines extending surfaces of other islands
and/or the perimeter. We mark the points of incidence and allow them to divide the
surfaces of the island into a larger set of sub-surfaces.

We then consider the partition of space into discrete convex elements which is cre-
ated by the s-lines and the m-lines already drawn - this is a hybrid partition that does
not correspond to either the “e-partition” or the “s-partition” as defined above. Given
this convex partition, we determine the strong visibility polygon of each surface or
subsurface.  We identify the m-lines intersecting this polygon. We determine on which
side of the m-line the surface lies and we cut away that part of the strong visibility
polygon which lies on the opposite side. Where an m-line is incident upon the sur-
face or sub-surface, so that the surface lies on both its sides, we ignore that m-line, as
far as this particular part of the procedure is concerned. If no m-line intersects the
visibility polygon, we retain the entire polygon. When this is done for all m-lines, we
obtain a polygon which is equal to, or smaller than the original visibility polygon.

We now consider the edges of the polygon previously determined. If the island is
fully surrounded by m-lines, no edge of the polygon should include a wall surface, or
part of a wall surface, that does not belong to the island. If such edges are found, we
have identified a “problem condition”. To address this condition, we link the mid
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point of the original island surface to the mid point of each of the unacceptable
surfaces in all cases where this is possible without crossing a surface. We treat this as
a set of “problem lines” and list it.

This procedure is repeated for all surfaces of all islands. We thus find the set of all
the “problem lines” associated with all the “problem conditions”. It must be noted,
that we cannot be sure we have identified all problem conditions until we have exam-
ined every surface or subsurface as described above. We will now discuss how to
remove problem conditions.

Each problem line identified is intersected by a number of diagonals of the plan
shape. At this stage, our purpose is to find the smallest set of such diagonals that
intersects all “problem lines” and to add these diagonals to the m-lines that represent
the shape. We choose the diagonal that intersects the largest number of problem
lines. Where several diagonals intersect the same number of problem lines but not
the same lines, we choose them all. Where several diagonals intersect the same prob-
lem lines we choose the one that also intersects the largest number of s-lines. Where
several diagonals intersect the same problem lines and the same number of s-lines we
choose the one that intersects the largest number of m-lines. Where even this is the
same for two or more diagonals, we chose the largest one.  Where even length is the
same we simply eliminate one at random. We eliminate from our consideration the
problem lines thus intersected, and repeat the procedure until all problem lines have
been removed. The selected diagonals are added to the set of m-lines. This com-
pletes the derivation of the full linear representation of spatial configuration. Figure
5 illustrates some of the aspects of the algorithm described above. Figure 6 presents
the complete accessibility maps for the plans taken as examples. Table 1, columns 7,
11, 12 and 13 expresses the number of m-lines needed to get everywhere and to
recognize plan topology as a proportion of the number of surfaces  in the plan and as
a proportion of the number of diagonals that can be drawn without crossing a wall
surface.  In all cases we need less m-lines than 20% of the number of vertices, and
less than 10% than the number of extendible diagonals, and finally less than 9% of
the total number of diagonals. These results demonstrate the economic efficiency of
our completed linear representation as compared to Hillier’s (1996) “all lines” map,
which includes the extendible diagonals only.

It must be noted that in some cases our elimination procedures will meet with pairs
of diagonals that are the same in very respect. Keeping all such diagonals will lead to
“weighting”  the connectivity pattern towards that part of the system, however slightly.
Eliminating one at random, will lead to another kind of bias in the local connectivity
pattern. Thus, the final linear representation is not always uniquely specified, even
though the number of lines and the number of non-trivial circulation loops that it
comprises are. Unique specification is harder in systems endowed with symmetry,
especially where symmetry applies to metric relations as well as to relations of inci-
dence. A discussion of properties of symmetry as a subject in its own right is outside
the scope of this paper.

At this stage we can compare the linear representation developed in the two preced-
ing sections and the traditional axial maps drawn manually according to the defini-
tions offered by Hillier and Hanson (1984). We have selected two examples that are
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The plan shown in figure 4d, highlighting two islands of 
surfaces that are not fully surrounded by m-lines. One of 
these will be examined as an example.

a

b

We consider sub-surface ab , where a is the point of 
insidence of an s-line upon a surface on an island, and b 
is an edge of the same surface. The visibility polygon of 
the sub-surface comprises the convex spaces all points 
of which see the sub-surface in its entirety. At this stage, 
the underlying convex partition used is created by s-lines 
and m-lines taken together. 

We consider the m-lines that intersect the visibility 
polygon. One of those, bc, leaves the surface on one 
side. We eliminate that part of the visibility polygon which 
lies on its opposite side. The remaining polygon is then 
examined. Three of its edges, cd, de, ef, comprise 
surfaces that do not lie on the same island as ab. We 
identify this as a problem condition.

a

b

c d

ef

a

b

c d

ef

We draw the lines that connect the midpoint of surface ab 
to the midpoints of the problem edges of the polygon. 
These are listed as problem lines.

b

f

All problem lines identified previously are intersected by 
the diagonal bf, which is thereby added to the m-lines, 
previously identified. This helps to complete the 
circulation loop around the island. The same procedure is 
used to complete all remaining circulation loops and to 
generate the complete linear representation of the plan, 
shown in figure 6b.

well used in the earlier literature on space syntax, namely Gassin (Hillier and Hanson,
1984) and Apt (Hillier et al., 1983; Hillier, 1989). In addition to the fact that these
examples are familiar, they are convenient because reasonably clear urban plans have
also been published along with their axial representations. The axial maps developed
according to our procedure, were compared to those originally published, and analyzed
using “Axman”, the software for axial analysis developed at the “Space Syntax Labo-
ratory” at University College London. Figure 7 presents the two pairs of linear maps.
Table 2 summarizes the syntactic profile of the two cases. For these two examples,
the linear representations drawn according to our algorithms approximate quite well
the original manually drawn axial maps. In both cases our method comes up with
fewer lines. It is possible that this is due to small discrepancies between the elec-
tronically redrawn maps we have used and the original maps. Alternatively, our algo-
rithms may have recognized possibilities that were not noticed when the original
maps were manually drawn. Mean connectivity and integration values are quite close,
and the 10% most integrated lines are practically the same. Only the correlation
between connectivity and integration for Gassin is appreciably better according to
our map. The examples, therefore, suggest that dense settlement patterns arranged
so as to generate relatively linear spaces, can be analyzed by our algorithms in ways
that approximate the original, manually drawn, axial maps.

Figure 5. Illustration of the procedure

for completing the accessibility map

Figure 6. Complete linear accessibility

map

6a

6b

6c

� 6d

6e

6f
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# lines Integration Connectivity Correlation Int.-Connect.
Apt (Hillier
 et al., 1983) 89 1.29 3.71 .79
Apt according to
our algorithms 82 1.30 3.75 .79
Gassin (Hillier &
 Hanson, 1984) 41 1.49 4.00 .77
Gassin according to
our algorithms 39 1.51 4.00 .84

4 Do linear maps describe “link” or “directional” distances?
By definition,  an integrated axial line is so linked into the pattern of intersections of
axial map that few other lines must be used in order to reach any particular destina-
tion line in the system (Hillier and Hanson, 1984; Hillier 1996). Another way to ex-
press this is to say that an integrated line is so positioned that we need few changes of
direction in order to reach any particular line in the system. In other words, implicit
in the analysis of the axial map and its interpretation, is the notion of axial distance

Figure 7. A comparison between

published axial maps and complete

linear maps derived according to our

procedures

Table 2. A syntactic comparison

between two settlement patterns

analyzed according to manually drawn

axialmaps and according to our

algorithms

�

Axial map of Apt as published by Hillier et al. 
(1983). 10% integration core shown as thicker 
lines

Linear representation of Apt generated by our 

Axial map of Gassin as published by Hillier and 
Hanson (1984). 10% integration core shown as 
thicker lines

Linear representation of Gassin generated by our 
algorithms 10% integration core shown as

Plan of Apt. Source: Hillier et al. (1983) Plan of Gassin. Source: Hillier and Hanson (1984)
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between a line taken as origin and all the other lines in a pattern. Unlike metric
distance, axial distance is about changes in direction. This is why it corresponds to
our sense of intelligibility of spatial patterns and our sense of orientation within them.
The question then arises as to whether a linear map also offers us a shorthand for
dealing with directional distances between any two points of a spatial configuration,
not just points on the axial lines. This has theoretical as well as practical consequences.
The theoretical consequence is that the linear map would then be interpreted not
merely as an economical set of lines that get around the system, but also as the struc-
ture underlying directional distances between pairs of positions.

Interestingly, there are ways to deal with directional distance without evoking a lin-
ear representation of spatial configuration. In the literature on computational geom-
etry the expression “link distance” has been used to describe the number of direc-
tion changes that are necessary in order to move between two positions (Suri, 1997).
Given a point in a simple polygon, link distances from any other point can be de-
scribed according to a partition into sub-polygons known as a “window partition”
(Suri, 1990). This is obtained by drawing the visibility polygon from the starting
point first. Those parts of the perimeter of the visibility polygon which are not edges
are treated as “windows” to areas beyond. Further windows are determined by taking
each of the first order windows as the starting point. By a successive process of
window determination, the entire original polygon is eventually covered by sub-poly-
gons. The minimum link distance between the starting point and any other point is
then a function of the number of windows that have to be crossed.

Having established the window partition from a given point, it is possible to com-
pute the minimum link distance between any two points in a polygon within a level
of accuracy of ±2 (Suri, 1990). If we are willing to compute a window partition from
each of the vertices, the minimum link distance between any two points can be
computed with perfect accuracy (Arkin et al., 1992). Unfortunately, these proce-
dures have only been applied to polygons without holes. Dealing with polygons that
include holes, such as most architectural plans, is not an easy problem, and there is
no relevant solution of the problem in the literature on computational geometry.

Given a connected linear representation of a spatial configuration however, we could
propose the following procedure for exploring link, or directional distances. Given
two points in the configuration, we first compute their visibility polygons. If those
polygons intersect, and if the points lie within the intersection, then their link dis-
tance is 1. If the polygons intersect, but the two points do not lie on the intersection,
then their link distance is 2. If the two polygons do not intersect with each other,
then we determine which m-lines are intersected by each. We then search for the
shortest connection between one of the m-lines intersected by the first polygon and
one of the m-lines intersected by the second. The link distance we are looking for
would be equal to the number of m-lines needed to link the visibility polygons, plus
2 for the lines representing the transition from the original points to the relevant m-
lines. According to this procedure, the linear representation of spatial configurations
becomes an efficient basis for exploring link distances between any two positions.
The added advantage, from an intuitive point of view, is that the linear representa-
tion of spatial configuration offers a sense of directions and intersections of move-
ment patterns that is not as readily accessible through the “window partition”.
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The question is whether a procedure such as the above, when applied according to
the map of lines that get everywhere and recognize circulation loops, would provide
good approximations to minimum link distances, and what the range of approxima-
tion would be. We have not solved this question yet. However, it would seem that it is,
in principle, possible to interpret the linear representations of spatial configuration
as an efficient scaffolding that allows us to deal with link distances between any
positions inside it. From the point of view of architectural analysis, this is theoreti-
cally significant since changes in direction are involved with the intelligibility of plans
from the point of view of a moving subject, while also affecting orientation. From a
practical point of view, the complete linear representation of spatial configuration
provides us with a way of describing the structure of all potential movements, an
issue we will take up again in the concluding section.

5 Concluding comments
The lines involved in the representations of spatial configuration discussed in this
paper, like the lines of the axial map originally proposed by Hillier and Hanson (1984),
are first and foremost lines of potential movement. From a logical point of view, a
straight line constitutes an elementary and well defined relationship between any
two points that it links, with order and succession defined along its length. From a
perceptual point of view, a straight line is the only path of movement that we are sure
to be able to see “all at once” from any of its points. By contrast, broken or curvilin-
ear paths can partly disappear behind visual obstacles. Thus, the straight line implies
both an ordering of the successive positions through which we can potentially move,
and a visual synchronization of these positions.  In addition, a pattern of intersecting
straight line offers a clear and simple reference for describing changes of direction
and developing an understanding of directional distances. These properties imply
that the representation of potential movement in terms of straight lines contributes
to our understanding of spatial configurations as intelligible patterns.

The significance of linear representations arises from the conceptual framework within
which they are defined. Their relevance depends upon the establishment of correla-
tions between their properties and aspects of space occupancy, space use, and cul-
tural  meaning in the built environment. Their objectivity, however,  arises from the
rigor and repeatability  of the procedures used to generate them. Our claim is that
our linear maps are economical and can be objectively derived for all relevant cases.
Thus, they represent a useful contribution within the general framework of “space
syntax”. The procedures described in this paper, however, should not be interpreted
solely as an attempt to approximate the manually drawn and intuitively appealing
axial map. We have shown that in some cases such approximation does indeed arise.
In other cases it may not, either because the axial map appears under-determined
and difficult to draw with certainty, or because intuition would suggest the addition
or removal of lines for reasons that cannot be spelled out in a rigorous and general-
ized manner. It is possible that future work may suggest new principles for generat-
ing linear representations, not merely in the interests of algorithmic efficiency, but
rather in order to capture some property of configuration other than the ones we
have dealt with: visibility, getting everywhere, and recognizing topological structure.
If our paper in any way facilitates or precipitates this, it will have served its methodo-
logical and theoretical purpose well.
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This paper also points to the idea that the same properties of configuration are at the
foundation of the structure of potential movement as well as of the structure of vis-
ibility. We are essentially dealing with the pattern of incidence of wall surfaces, the
occurrence and intersection of diagonals which do not intersect wall surfaces and
the patterns of extension of diagonals and surfaces. These are the relational building
blocks of configurational patterns. Movement and visibility are also linked from the
point of view of ordinary perception, even though movement and orientation can be
achieved in the absence of sight. Given these observations, it would seem that the
ability to systematically distinguish between linear representations which only guar-
antee complete visibility, representations which also relate to universal accessibility,
and finally representations which recognize topological structure in addition to eve-
rything else, may serve to clarify aspects of configurational structure which other-
wise remain compounded and can appear confusing. Such successive linear repre-
sentations allow us to explore layers of configurational structure while manipulating
the same elementary relational ideas. They also provide us with a clearer under-
standing of how visibility and movement are balanced as aspects of configurational
descriptions.

Reference to movement and the patterns of potential movement, brings us to our last
comment. Actually observed paths of movement may be linear, they may merely be
approximated by straight lines, or they may be entirely unrelated to such lines. How-
ever, we can project any path of movement which does not intersect itself except after
encircling a set of wall surfaces, onto a system of straight lines, so that every point
along the path is visibly linked to its projection conjugate, and also so that relation-
ships of order and succession are preserved. We may think of this in terms of an
elastic band whose ends are pinned to the coordinates corresponding to the origin
and the destination of the path. The aim is to transform the rubber band so that it
gets superimposed to the smallest number of lines that connect origin and destina-
tion, while at the same time satisfying the previously mentioned conditions. Such an
exercise is always possible if our linear representation has been developed to recog-
nize the topological structure of the plan. In many cases, the transformation will
result in a more economical description of the path from the point of view of direc-
tional changes. In some cases, the transformation may lead from a direct path to a
broken one, if the lnear trajectory of the path does not correspond to an m-line that
has been drawn. All paths, however, can be reduced to some part of the completed
linear map. By implication, the complete linear maps, though generated according to
the properties of shape, can also be interpreted as representations of certain struc-
tural features of paths of movement, whether actually observed, or simply poten-
tially present in the configuration. This is an additional reason why linear represen-
tations of spatial configuration have proved so fundamental to the theoretical insights
of “space syntax”.
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