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0 Abstract

As we move through buildings we experience not only continuous changes of

perspective but also discrete transitions from one space to another. To describe

movement as a pattern of such transitions we need methods for partitioning space

into relevant elementary units. Here we explore several convex partitions including

one based on the thresholds at which edges, corners and surfaces appear into the

field of vision of a moving subject, or disappear outside it. Our purpose is to contribute

to the development of quantitative descriptions of building shape and spatial

configuration.

1  Movement as a pattern of transitions

Buildings make space available to our experience, useful for human activities and

intelligible to our understanding, through the disposition and arrangement of

boundaries. Boundaries are used to create patterns of enclosure, contiguity,

containment, subdivision, accessibility and visibility. Because interior space is

configured according to the shape of the perimeter and subdivided according to the

disposition of partitions, we cannot experience buildings in their entirety from any

one of their points, except in the most simple cases. Consequently, movement is

fundamental to our intuition of spatial patterns inside buildings.

The intimate relationship between movement and our understanding and experience

of space is by no means a new idea. Frankl (1914) recognized movement as a

precondition for retrieving a single mental description of form, the synthesis of the

partial images that are collected from different observation points within a building.

Cassirer (1955) has argued that our intuitions of form and movement are linked,

since movement can be interpreted as potential form and form can be interpreted as

a structure of potential movement. In different ways, Poincaré (1913) and Piaget

(1956) have suggested that movement is the operational foundation that allows us to

relate different views of complex spatial patterns to one another and to retrieve

descriptions of spatial relationships by linking direct experience to abstract reason.

The relationship between movement and visual perception is central to the work of

Gibson (1979). He has argued that the observation of changes regarding the visible

and the hidden, and more specifically the observation of the relationship between

visibly extended, receding and occluding edges, allows us to retrieve information on

the three dimensional structure of environment.  More recently, the relationship

between the configuration of space and movement has been at the core of “space

syntax”, a method for describing the relational structure of built space in conjunction

with the development of theories regarding the generic social function and cultural

meanings associated with buildings (Hillier and Hanson, 1984; Hillier, 1996).  This
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paper introduces a description of the shape and spatial configuration of building

plans to address the changes of spatial relationships that arise as we move and position

ourselves inside buildings. The analysis is limited to two dimensional planar

relationships even though the ideas presented here can potentially be extended to

deal with three dimensions, or be applied to an analysis of sections. Building plans

that involve curves will not be discussed.

Movement is about changes of position, and positions can themselves be differentiated

according to the views of the building that they offer. We can distinguish two kinds of

differentiation. The first relates to our changing perspective upon a given set of

elements of the environment and is continuous while the set of elements remains

constant. The second relates to our exposure to different parts of the environment; it

entails discrete transitions from one space to another, or from a visual field comprising

some set of environmental elements, such as surfaces, corners and edges, to another

visual field, comprising a different set. Therefore, a study of shape and spatial

configuration from the point of view of movement must show how we can partition

space so as to identify transitions from one spatial position to another.  In this way we

can account for the experience of potential movement in terms of the objective

structure of environment. In this paper, transitions are ultimately defined according

to the appearance or disappearance of corners, edges, or surfaces, as we move inside

buildings. We identify units of space within which the visual information regarding

corners, edges and surfaces remains stable. This allows us to describe a given plan as a

pattern of potential transitions from one informationally stable area to another.

We define the shape of a building plan as a set of wall surfaces and a set of

discontinuities. We define discontinuities to include both the edges of free standing

walls and the corners formed at the intersection of two wall surfaces.  Since wall

surfaces extend between discontinuities, the crucial determinants of shape are the

discontinuities themselves. In this paper we allow walls to be represented as lines

without thickness, not only for simplicity but also to allow for the architectural intuition

that there can be elements of building plans which are conceptually linear.  At various

stages as we move through a building, discontinuities and surfaces either appear into

our field of vision or disappear outside it. If we assume a theoretical observer

occupying a single point and possessing 360o of vision, we may say that at any moment

in time the observer sees those discontinuities that can be linked to his/her position

through uninterrupted straight lines, or lines that do not cross a physical boundary.

Accordingly, a transition with respect to shape is a change of the set of such visible

and accessible discontinuities. This is illustrated in figure 1. Our positing of a

theoretical observer endowed with 360o of vision is a convenient way to take into

account the fact that we experience space over time, looking in different directions,

so that we are ultimately aware of our complete surroundings. Gibson (1979), for

example, has extensively argued that vision should not be considered in terms of

single visual frames, taken at a given moment in time,  but rather in terms of this

broader awareness which involves movements of the eyes, the head and the body.

Since our aim is to describe the structure of environment, not the processes of

perception and cognition, the postulate of a theoretical observer allows us to

summarize the relevant properties of environment leaving open the question of how

such properties are gradually recognized by actual subjects.

Dr J Peponis, Dr J Wineman, M Rashid, S Kim, S Bafna • On the Description of Shape and Spatial Configuration Inside Buildings

40.02



iii

S P A C E  S Y N T A X  F I R S T  I N T E R N A T I O N A L  S Y M P O S I U M  ¥  L O N D O N  1 9 9 7

P R O C E E D I N G S   V O L U M E  I I I

40.03The differentiation of interior space, however, should not be considered only as a

function of our exposure to different elements of built shape. We can look at space,

and transitions across spaces, from the point of view of the relationships between

different potential occupants. We may initially conceive of undivided space as an

infinite collection of points on the plane, representing possible positions that can be

occupied by a subject. The continuity of empty space implies that any three subjects

A, B and C, are directly visible and accessible from each other, so that we can link

them by a straight line. With the addition of walls this is no longer the case for all

positions. Belonging to the same space is now a special condition. We can appreciate

this by imagining three theoretical subjects and by observing that their relationship

can vary. In some situations,  if subjects A and B see each other and subjects A and C

also see each other, then we can infer that subjects B and C see each other as well. In

such situations, all relationships of visibility are not only reciprocated but also

commutative. This is what we normally mean when we say that “we are together” in

a space. In other situations, the opposite condition prevails and none of  the subjects

sees another. In other cases still, the relations which hold are not commutative: while

A and B, as well as B and C, see each other, A cannot see C. These possibilities are

shown in figure 2.

Figure 1. Changing relationships of a

moving subject to the discontinuites

that define a shape.

Figure 2. Convex and nonconvex

relationships between positions on a

plan

1b

From a mathematical point of view, we are discussing properties of convexity.

According to the standard definition, a space is convex when any two of its points can

be joined by a line that lies entirely within the space, or, to state the same thing

differently, a line that does not cross the shape’s boundary. Convexity is the underlying

property that we recognize when we identify an area as an integral and discrete

spatial unit. A set of positions on a plan are in a convex relationship to each other if

there is a convex polygon that contains all three in its interior.  Two areas are in a non-

convex relationship to each other when there is no convex polygon that includes both

in its interior. In figure 2a, the three subjects are in a convex relationship, while in

figure 2b, they are in a non-convex relationship. In figure 2c, only two pairs of subjects

are in a convex relationship. The consequence of boundaries is the creation of areas

that are not convex to each other as well as the creation of relationships of adjacency

and/or connection between convex areas. Two convex areas will be said to be connected

when they are adjacent and when their shared edge or partly shared edge  is not fully

occupied by a wall. Thus, a spatial configuration can be described according to the
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pattern of convex spaces that it engenders and the connections between them.  From

this point of view, a transition can be defined as a movement from one convex area to

another.

The description of building plans as patterns of convex spaces and their connections

of permeability is one of the major methodological propositions of “space syntax”.

Hillier and Hanson (1984) have argued that convex spaces correspond to our intuition

of two dimensional spatial units which are completely available to our direct experience

from any of their points. To them, the convex representation of plans is a counterpoint

to their representation according to the pattern of intersection of the longest lines

that can be drawn without meeting a wall.  Such lines, which they call “axial lines”,

cut across several convex spaces and  correspond more closely to our intuition of

space as a field of movement. This is because movement presupposes a sense of

potential destinations, either final or intermediate, that may be only partly visible, at

a distance. The major thrust of “space syntax” has been to describe space and

movement as a dimension of social co-presence. The way in which the structure of

space and movement affects our exposure to the elements of shape has been a

secondary consideration. For the purposes of the argument developed in this article,

the emphasis is reversed. An attempt is made, however, to show that, from the point

of view of formal analysis, these two ways of looking at spatial configuration are

complementary and can be developed from the same foundation.

We will propose that the description of shape and spatial configuration from the

point of view of the moving subject can be discussed by linking projective and convex

relationships. We use the word projective in a most elementary sense, to refer to

relationships of incidence between lines. As mentioned earlier, given a point in space,

and given the lines that project from it to the discontinuities that define the built

shape, the question is which of these lines intersect walls (and therefore do not

represent a relation of visibility) and which do not (thus corresponding to a relation

of visibility). On the other hand, the idea of convexity is fundamental since it is linked

to the structure of space as a field of potential co-presence of the occupants of the

building. The two ideas, of elementary projective relationships and of elementary

convex areas come together as we seek to identify informationally stable units of

space. From a logical point of view, a spatial unit can only be informationally stable if

every point within it is linked not only to the same discontinuities of shape around

and beyond, but also to all other points inside the unit. Informational stability has

both internal and external components. We will proceed to introduce some concepts

and representations through the use of examples. Where appropriate, we will relate

and contrast our approach to other descriptive methods that share an intellectual

foundation similar to our own, and that have served as starting points for the

development of our work, most notably “space syntax” as well as the “isovists” proposed

by Benedikt (1979).

2  Convex partitions

In this section we discuss different ways of partitioning a plan into convex spaces,

culminating with a partition which provides us with spatial elements which are

informationally stable with respect to their exposure to shape.

Since “space syntax” more than other methodologies for the analysis of buildings,
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Figure 3. Alternative attempts to

partition a shape into the  least set of

fattest convex spaces (fatness values of

individual convex spaces are indicated

alongside).

has proposed that plans can be represented as sets of interrelated convex spaces, we

may take it as a starting point. Hillier and Hanson have originally proposed that the

convex representation of a plan should comprise “the least set of the fattest spaces

that covers the system” (1984, p.92). Subsequently, they proposed that if visual

distinctions are difficult, the map can be derived by locating the largest possible

circles that can be drawn without intersecting a wall, and then by expanding each

circle to the largest space possible without reducing the fatness of any other space

(1984, pp 98). A number of questions are raised by the degree of completion and

rigor of the definition. Not only are we not always sure how to rigorously balance the

search for large spaces against the requirement that we preserve fatness ; it is also

unclear how the requirements of size and fatness should interact with the requirement

that we break the system into as small a number of spaces as possible given our other

requirements.

We illustrate some of these difficulties in figure 3. In discussing the examples,  we

interpret fatness to mean area/perimeter ratio.  However, we relativize this ratio, to

allow comparisons between spaces of different areas. We do this by comparing a

given space to a circle of the same area:  we divide the perimeter of a circle whose

area is equal to the space under consideration, by the perimeter of that space. In

figure 3a we start with two equal circles and end up with two convex spaces. In

figure 3b we start with two circles and end up with three spaces. Even choosing

between those two solutions is not as easy as it seems, because the solution with

three spaces gives us higher fatness values.  In figure 3c we start with the largest

single circle and end up with five spaces. It seems that if we want to minimize the

number of spaces, we cannot always start by drawing the largest possible circle.  These

examples are not intended to challenge the earlier syntactic methods regarding convex

partitions in general. In most real cases the methods can be applied by the student

without generating puzzles.  A substantial body of research suggests that the method

recaptures properties of spatial arrangements that are essential to our understanding

and use of buildings. Some of the relevant studies will be mentioned later in this

article. Our comments are intended to highlight some of the technical problems that

remain unresolved with the earlier attempts to divide building plans into convex spaces.

The development of “space syntax” has led to new ways of handling convex partitions.

The most notable method allows for the identification of overlapping convex spaces

(Hillier, 1996, pp  125). According to this partition, convex elements are defined with

reference to the surfaces of built form: the edges of convex spaces are collinear with
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Figure 4. Partition of shape into

overlapping convex spaces.
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the lines produced by extending wall surfaces, where this is possible, until the

extensions reach another wall surface. The process has been automated through “space

box”, a computer program developed by Penn and Dalton, working at Hillier’s Space

Syntax Laboratory, University College London (2) . Of course, when we extend the

lines defined by wall surfaces, we produce a potentially very large number of

overlapping convex spaces. As we understand it, the convex partition mentioned by

Hillier (1996) comprises only those convex spaces each side of which contains a wall

surface of the system. Essentially, this means that only the “largest” convex spaces

defined by the various combinations of extended wall surfaces are considered. Figure

4, presents a simple example of overlapping convex spaces according to our

understanding of the procedure developed by Penn, Dalton and Hillier.

The comparison between the two methodologies of convex partition mentioned above

reveals a rather interesting theoretical issue. In the first case the analysis starts from

space, and treats built shape as a constraint that limits the extent to which space can

retain its convex integrity. Convex integrity can, in this case, be seen as a foundation

for the functioning of space as a field of reciprocal and commutative co-presence,

regardless of the exposure to particular elements of shape. In the second case, the

partition of space proceeds according to the components of the shape. The built

shape drives the analysis and space itself is shaped into convex elements as a

consequence of the presence of built shape.  One practical consequence of this rather

subtle theoretical difference is the different number of convex spaces and the different

kinds of relationships (adjacency versus overlap) produced in each case. As a

consequence, space as a field of co-presence appears more diversified in the second

analysis. But the theoretical possibility that we may look at the interaction of space

and shape from space up towards shape as well as from shape down towards space,

remains intriguing to us. While shape and spatial structure cannot, quite self evidently,

be discussed independently of one another, the issue of whether they may be

conceptually and analytically distinguishable remains a concern for any theory of

architectural form.

We will now proceed to propose or discuss other convex partitions. Defining the

minimum number of convex spaces into which a plan can be partitioned provides us

with the simplest representation of its spatial structure. At the same time, the plan

can be explored from the point of view of the underlying relations of co-presence

and separation between occupants that it engenders.  We propose to call the partition

of a plan into the minimum number of convex spaces that are needed to cover all its

area, a “minimum partition”. We will refer to the convex spaces created by a minimum
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partition as “m-spaces”, and the lines drawn to demarcate them as “m-lines”. From a

mathematical point of view, the minimum partition describes, how far can space

retain its convex integrity subject to the presence of built shape. The minimum number

of convex spaces will on average also be the largest in area (since the total area is

divided by a smaller number), and thus the “minimum partition” would come

intuitively close to the one proposed by Hillier and Hanson (1984), if we were prepared

to ignore the question of fatness and relax the requirement that the largest individual

spaces are drawn first.

We have to treat two questions. Can a minimum partition be drawn? And can a

minimum partition be uniquely specified?  We think that we have developed a process

that gives a minimum partition but we have not found a way to ensure that this

partition is uniquely specified in all cases. To develop a minimum partition for shapes

without curves, we start with the observation that each reflex angle must be divided

into two convex ones by drawing a partition line . A reflex angle is one that is greater

than 180o. Here, reflex angles include the free standing edges of walls which are

taken to be angles of 360o. It follows logically, that we should first draw any lines that

connect two reflex angles in such a way that reflex angles are eliminated at both

ends, and then deal with the remaining reflex angles. The following logical procedure

seems to work well in the cases we have tested:

1. We draw each line that connects two reflex corners in a way which eliminates

concavity at both ends.

2. When these lines intersect or share endpoints, we start a process of elimination.

The aim is to retain the largest number of such lines which do not intersect with each

other or share an end point.

3. For all remaining reflex angles, we extend one of their sides until it meets a wall, or

a previously drawn partition line. We proceed until all necessary extensions are drawn.

4. We check whether any two adjacent convex spaces thus produced, whose common

edge does not include any part of a wall, can be treated as parts of a single larger

convex space. If so, we eliminate the demarcation line that separates them.

It should be noted that the minimum partition thus created is not always uniquely

specified. There are alternative ways of drawing the partition, for example, by choosing

to extend different sides of reflex angles, or to deal with the reflex angles in a different

order. It is important to realize, however, that the problem of whether a minimum

partition can be drawn is theoretically independent from the problem of whether it

can be uniquely specified. Specificity can be handled as a matter of imposing

additional constraints. We will briefly illustrate this. We can limit the minimum

partition alternatives by choosing to draw the shortest possible extension lines first.

This takes care of the order in which we will deal with reflex angles, as well as of the

choice of which side to extend. Figure 5 shows four elementary hypothetical plans

and figure 6 shows their minimum partitions.  Following all the above rules, only one

minimum partition can be derived for cases 5a, 5b and 5c; a number of alternatives,

however, would equally well be derived for 5d, as shown in figure 6. For example, the

two external doors can appear connected either to the same space or to different

spaces, as shown in figures 6d.1 and 6d.2, which may have serious implications for

further analysis. To deal with such problems, we may stipulate that we draw the
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Figure 7. Modified minimum

partitions of hypothetical plans.

Figure 6. Minimum partitions of

hypothetical plans.

Figure 5. Four hypothetical plans

Figure 8. Alternative minimum

partitions of a hypothetical plan.
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As we discussed earlier, seeking to preserve the maximum convex integrity is only

one way to approach the interaction between built shape and space. We now come to

propose convex partitions that take into account the way in which built shape appears

to a moving subject. We first consider the partition which is obtained by extending

both sides of all reflex angles as well as all walls terminating at a free standing endpoint.

Since the partition is obtained by extending surfaces, we propose to call it a “surface

partition”. We refer to the corresponding lines and spaces as “s-lines” and “s-spaces”

respectively.  The s-partitions of the shapes presented in figure 5 are offered in figure

9. It is noticeable that in the case of plan 9a the surface partition coincides with the

minimum partition; in the cases of plans 9b, 9c and 9d, this is not so. In these three

cases, the surface partition produces spaces whose corners do not correspond to the

intersection of two walls. In fact, at least one solid wall extends continuously across

most s-lines. The continuity of boundaries across the demarcations of the surface

partition may be treated as a defining characteristic of a broad family of open plans.

This property is absent from the family of more cellular arrangements, illustrated by

plan 9a.

bisector of reflex angles rather than extend one of their sides. In addition, the shortest

possible bisectors should be drawn first. This allows us to uniquely specify the

minimum partitions of all shapes in figure 5, as shown in figure 7. Our conventions,

however, cannot help us to uniquely specify the minimum partition for the shape

shown in figure 8. Thus, the development of a procedure that leads to a uniquely

specified minimum partition for any shape remains an unresolved problem.
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Figure 9.  s-Partitions of four

hypothetical plans.

Figure 10.  Changing relationships of a

moving subject to the discontinuities

available to an s-space.

It will be noted that the overlapping convex spaces mentioned by Hillier (1996) can

be derived by creating the union of sets comprising some of the discrete spaces

produced by the s-partition. The connection between the two partitions should not,

however, detract from the distinct focus of the argument that is being developed

here. To us, the s-partition is a first step towards capturing the experience of shape

that is available to a moving observer.  Each time such an observer crosses an s-line,

an entire surface either appears into the visual field or disappears outside it. For any

two different s-spaces there is at least one wall surface which is entirely visible from

one but not from the other. Thus, transitions from one s-space to another, are associated

with changes in the available information about shape.

The reverse, however, is not true. Surfaces and parts of surfaces, may appear or

disappear without crossing an s-line.  The information about shape changes while a

moving observer remains within the same s-space.  Quite clearly, different points

within the same s-space may differ by being linked to a different set of discontinuities

of the built shape as illustrated in figure 10. To obtain informationally stable spaces,

and to explicitly identify all thresholds at which information regarding shape changes,

we propose another partition.

We begin by considering the diagonals that can be drawn in a shape and their

extensions. A diagonal is simply defined as a line that joins two discontinuities without

crossing a wall. Some diagonals cannot be extended without going outside the shape.

We call these “non-extendible” diagonals. Other diagonals can be extended inside

the shape at one, or both, of their ends, until they meet a wall. We call these diagonals

“extendible”. We now propose to obtain a new convex partition which includes the

extensions of the extendible diagonals in addition to all the lines used to generate the

surface partition. The diagonals themselves are not drawn.

The resulting partition has two interesting properties. First, every time we cross a

demarcation line,  a discontinuity either appears into, or disappears from, our field of

vision. Second, the convex sub-shapes defined by this partition are informationally

stable. We propose to call this partition “endpoint partition”. The corresponding

demarcation lines and convex spaces will be referred to as “e-lines” and “e-spaces”.

Figure 11 presents the endpoint partition of the four theoretical shapes previously

discussed (2).



x

S P A C E  S Y N T A X  F I R S T  I N T E R N A T I O N A L  S Y M P O S I U M  ¥  L O N D O N  1 9 9 7

40.10

Figure 11.  e-Partitions of four

hypothetical plans.
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The significance of the e-partition can be highlighted if we relate it to the idea of

“isovist” . In a key article Benedikt (1979) has defined the “isovist” as the set of

points visible from a vantage point in space, with respect to an environment. He then

proceeded to propose a number of properties of isovists which have a mathematical

and intuitive significance as descriptors of the structure of an environment seen from

a point. These include, the area of the isovist, the length of real surfaces exposed to

the isovist, the length of occlusive radial boundaries of the isovist (these are the

boundaries that do not correspond to real surfaces but are generated from the manner

in which surfaces are placed in front of each other with respect to the observer) and

the shape and compactness of the isovist.

Isovists can be drawn from a great number of positions in any plan (mathematically

speaking they can be drawn from an infinite number of positions). Benedikt’s

statement that “describing an environment in terms of the position of its real surfaces

... is entirely equivalent to describing it by the set of all possible isovists corresponding

to all points...” could inadvertently conceal a real methodological dilemma. While

surfaces can be described completely according to the positions of edges and corners,

which are always a finite set, isovists can never be drawn from all possible points.

One implication of this is that isovist analysis, while easily applicable if we have reason

to select some particular viewing points, cannot readily be automated or

proceduralized, to deal with an entire plan. It is always necessary to devise ways for

sampling the set of points from which we will draw the isovist, very much as we

sample points when we develop contour site maps. Benedikt has, of course, noted

that, in general, a small number of isovists are sufficient to collectively cover all

surfaces, edges and corners, of a building. This follows from a mathematical theorem,

known as the “art gallery theorem”,  that demonstrates that the sufficient number of

points needed to cover the entire surface of a plan is a function of the number of

reflex angles (O’Rourke, 1994, p. 3-10). The identification of such strategic sets of

points, and of potential paths that connect them, can of course be of great value, as

suggested by Benedikt. It would still cover only one aspect of the experience of moving

around buildings. Benedikt has also proposed that we can draw contours

corresponding to points on a plan from which a certain property of isovists, say area,

remains constant. Drawing such contour maps, however, can be a very laborious

procedure depending on the level of detail that we wish to achieve and the sampling

procedure that we follow.

It will be seen that isovists drawn from within the same e-space will encompass the

same discontinuities and the same surfaces. The difference between one isovist and

another, in this case, will be the progressive emergence or recession of certain surfaces
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behind certain edges, which is of course one of the “constants” that describe the

invariant structure of environment according to Gibson (1979). As we cross the

boundary between e-spaces, the isovist will change more radically. In other words,

from the point of view of information about an environment, we may consider that

isovists can usefully be grouped according to sets which correspond to the points

within e-spaces.

By providing us with the informationally stable convex constituents of a plan, the e-

partition helps us to define movement as a finite pattern of discrete transitions, rather

than as an infinitely variable pattern of perspective views. The endpoint partition is

fundamental in several respects. It is mathematically well defined, finite, and uniquely

specified for a given shape. It seems to capture the objective structure of environment

that gives rise to the awareness of receding and occluding edges that is fundamental

to Gibson’s ecological theory of perception. Once we have identified elementary

units, we can seek to develop theories about how such units, and the information that

is attached to them, can be coordinated into the more complex patterns of order and

networks of accessibility that concern Piaget. And of course, we can apply the measures

associated with space syntax not only to these elementary spatial units but to more

complicated entities that can be derived from them. The last possibility will be

discussed in greater detail in the next section, bringing the idea of visual fields more

firmly into the purview of the analysis.

3 The analysis of relationships of accessibility and visibility in convex partitions

Two convex spaces are adjacent if they have a face to face joint and thereby share at

least part of an edge. They are connected to one another if their shared edge is not

entirely covered by a wall, so that we can move from one to the other. Given a convex

partition, we can easily establish the matrix of connections between spaces. The

connectivity of each space is defined as a simple measure of the number of neighboring

spaces to which it is connected. Connectivity, however, is a “local” measure that does

not describe how each space is related to the rest of the system.

“Space syntax” (Hillier and Hanson, 1984; Hillier 1996) suggests that, from the point

of view of the social use and cultural meanings of layouts, the relation of each space

to the rest of the system is of far greater significance than its connectivity. They have

proposed that the property of “integration” describes the way in which the parts of a

system are linked into a whole. According to them, a space is said to be more integrated

when all the other spaces can be reached after traversing a small number of intervening

spaces;  it is less integrated when the necessary number of intermediate spaces

increases. From a computational point of view, the basis for computing the integration

of a space is the formula (k-2)/(2MD-1). Here, k is the number of elements in a

system; MD (mean depth) is the average minimum number of transitions, from one

space to another, that must be made to reach every other part of the system. The

value obtained by this formula is multiplied by the expression ( (6.644k . log
10

(k+2)-

5.17k+2)/(k2-3k+2)) in order to facilitate the comparison of systems of different size,

in the light of research findings regarding the behavior of the measure when applied

to large samples of data.

For the greater part, research using “space syntax” has emphasized the analysis of
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Figure 12.  Plan and convex partitions

of Farnsworth House, with integration

values indicated.
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to examine the e-partition and observe that the integration values of e-spaces fall

into two groups. All main spaces along the perimeter have one value. The four spaces

associated with internal convex recesses have a lower value. This elementary analytical

discrimination does still not seem to reveal much about the properties of the shape.

However, the connectivity of e-spaces can be usefully expanded to take into account

connections beyond the set of adjacent spaces. The way to do this, is to consider

plans in terms of their linear components. There is, however, a noteworthy body of

analysis applying the convex partition of plans proposed by Hillier and Hanson (1984).

This suggests that integration is related to the way in which layouts are used by their

occupant organizations, and also the way they structure, instrumentally or symbolically,

the relationships between their inhabitants (Peponis, 1982; Peponis, 1985; Hillier,

Hanson and Graham, 1987; Hillier and Penn, 1991; Hanson, 1994; Peponis, 1993;

Orhun, Hillier and Hanson, 1995 ).

Here, however, we wish to treat integration as a purely formal measure and to discuss

how the partitions proposed in this paper may allow us to describe subtler properties

of shape and spatial configuration inside buildings. From an intuitive point of view, it

would seem that our methods could be applied to studies of how environments become

intelligible.

We will proceed through the discussion of an example. Figure 12 shows a simplified

plan of  Farnsworth house, designed by Mies Van der Rohe, and its convex partitions.

Here we treat the plan as an elementary shape. We are not seeking to analyze the

main architectural qualities of the building. For example, we will not be discussing

the visual relationships to the external environment, or the placement of the building

on its site, both of which are essential to its architectural quality.

The minimum and surface partitions of the interior of this built shape coincide. The

structure of connections between spaces is essentially a continuous single ring, and

this is precisely why we have chosen the example. As a result, the integration values

of all s-spaces are the same, so long as we do not take into account the effects of the

entrance. As a purely interior shape, therefore, this appears syntactically

undifferentiated from the point of view of the minimum and s-partition. We proceed
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Figure 13.  The convex span of an e-

space in Farnsworth House.

Figure 14.  The integration pattern of

Farnsworth House based on expanded

connectivity.

relations of visibility that go beyond direct connections to adjacent spaces. This brings

us back to Benedikt’s isovists.  Linking the analysis of isovists to the analysis of convex

partitions is not a new idea. For example Hillier (1993) and Hanson (1994) both

adapt Benedikt’s isovists so that they correspond to convex spaces rather than points.

Intuitively, these isovists are intended to cover the areas visible from any of the points,

either of the entire convex space under consideration,  or from one of its parts.

However, unless the isovist that corresponds to a convex space is reduced to the

isovist drawn from some specific point, like the center of gravity, or to the union of

the isovists drawn from a small set of points (for example, the middle of thresholds to

adjoining spaces), the derivation of the isovist cannot easily be automated.

We believe that there is a way to analyze visual relationships between different areas

systematically and automatically, across an entire plan. The key idea is to take pairs of

convex spaces and to ask whether they can be “rubber-banded” together, to create a

bigger convex space, not containing and not crossing a wall surface. In mathematical

terms, “rubber-banding” is equivalent to determining the convex hull with the

minimum perimeter that contains both spaces. If the convex spaces we start with

have been produced by a minimum partition, the answer to this question will always

be negative. If we deal with s-spaces or e-spaces, the answer can be interestingly

positive. We can, then, take each space as a starting point, and identify all other

spaces that are convex to it, thus defining what we propose to call its “convex span”.

The convex span of a space contains all other spaces every point of which is fully

visible from every point of the original space. Thus, convex spans provide us with an

alternative way of describing visual fields.

We propose to use the term “expanded connectivity” to describe the relationship of

a space not only to its immediate accessible neighbours but to all members of its

convex span. To illustrate these ideas, we present, in figure 13, the convex span of a

chosen e-space in Farnsworth House.

Given the expanded connectivity matrix that is based on the convex span of e-spaces,

we can compute new integration values. The integration of an e-space now reflects

how many convex spans other than its own must be traversed before all space becomes

visible. Figure 14 shows the results of this computation. It will be noticed that the

spatial structure of Farnsworth House now appears highly differentiated. The pattern

of differentiation matches our intuitive understanding of the plan. Spaces at the

corners of the house appear more integrated than spaces in the middle, because they

enjoy expanded connections in two directions. Spaces associated with the convex

alcoves are less integrated than other spaces contained between the inner and the

outer surfaces. This example illustrates the potential advantages of using the more

refined partitions, such as the endpoint partition, to enrich the analysis of plans.

4  Local properties of the spatial exposure of shape

The partitions introduced here can provide us with a foundation for the analysis of

our exposure to shape as we move inside buildings. We will proceed to illustrate a

small number of properties among the range that are currently being investigated.

Our aim is to show that the analysis of information available locally can clarify

interesting aspects of shape and spatial configuration. A future article may address
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Figure 15.  Simplified house plans

shaded according to the visibility of

discontinuities from e-spaces.
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expressed as a ratio to the total number of discontinuities that are needed to define

the shape. In figure 15 we present the simplified plans of Fallingwater, by Frank

Lloyd Wright and the house at Riva San Vitale by Mario Botta. These plans are then

shaded according to the proportion of the shape discontinuities that are visible from

their e-spaces. The basic numeric information concerning the visibility of

discontinuities from e-spaces is summarized in table 1.

the way in which we can develop more global descriptors and build up ways to

recognize more encompassing shapes and sub-shapes inside buildings. To present

our ideas we will use simple examples. It must be noted that we deal with interior

spaces only, excluding the relation to exterior, however important it might be

architecturally;  furthermore, we treat the simplified plans as mere examples of built

shape, not taking into account information about space use, architectural intentions

or other matters.

The convex spaces produced by the endpoint partition of a plan are visually linked to

different sets of boundary discontinuities. The number of such discontinuities is an

index of the information about the shape that is locally available and can easily be
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Figure 16.  Three pairs of theoretical

plans and their e-spaces shaded

according to the number of visible

discontinuities.

Table 2.  The visibility of

discontinuities from e-spaces in six

theoretical house plans.

Table 1.  The visibility of

discontinuities from e-spaces in two

house plans.

the proportions of the plans, and more specifically on the proportions of solid walls

to their extensions. The numerical information concerning the visibility of

discontinuities from e-spaces is provided in table 2.  It will be noted that in the case

of a plan which is subdivided by virtue of placing a square inside a square, the e-

spaces that get added at the periphery provide more information about the shape

than any other space. By contrast, in the case of the plans produced by distorting an

# of Visible Visible Visible

discontinuities discontinuities discontinuities discontinuities

mean maximum minimum

Fallingwater 45 .332 .55 .09

House at

Riva San Vitale 22 .397 .64 .18

A visual inspection of the plans suggests that in the case of the house at Riva San

Vitale, more information about the overall shape becomes available from some of the

e-spaces which are attached to the periphery of the plan. In the case of Fallingwater,

information is more often maximized in e-paces that are positioned centrally between

the boundaries. The periphery, taken as a whole, provides less exposure to shape

information. The contrast between the centrifugal and centripetal exposure of shape

to view can be easily interpreted. In one case the convex articulation of space arises

from positioning one sub-shape inside the other. The center of the plan is occupied

by walls. In the other case articulation arises from the deformations and

transformations of an external boundary. We can, however, understand the

phenomenon better by taking a closer look at the behavior of the endpoint partition

of simpler theoretical plans.

Figure 16 shows three pairs of plans. Each pair is generated by manipulating the

same underlying shape. Therefore, the members of each pair have the same number

of discontinuities, and generate the same number of e-lines. Their difference resides

in the number of intersections that are produced by the e-lines and the corresponding

number of e-spaces produced by the endpoint partition. These seem to depend on
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s-spaces.
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outer boundary, the e-spaces that get added at the periphery provide less information

than any other space. It would seem that by studying elementary properties of the

endpoint partition, we can potentially understand not only some critical differences

between real buildings, but also the principles that govern the distribution of shape

information as a function of elementary generators of shape.

# of discont. # of e-spaces Visible discont. Visible discont. Visible discont.

mean maximum minimum

Plan a1' 8 16 .625 .750 .500

Plan a2' 8 28 .714 .875 .500

Plan b1' 12 13 .795 1.000 .750

Plan b2' 12 17 .765 1.000 .667

Plan c1'  8 11 .818 1.000 .500

Plan c2' 8 15 .767 1.000 .417

As discussed so far, the significance of the endpoint partition resides in the creation

of discrete, informationally stable units of space, that punctuate our experience of

movement. Because the endpoint partition is so sensitive to all changes of our exposure
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There is, however, another property of the surface partition which, while intuitively

obvious, is not as easy to quantify. In the Brick House, for example, the s-spaces seem

to be unambiguously delineated, while in the case of Fallingwater the surface partition

creates spaces that may not otherwise have been recognized as discrete spatial units.

We propose that this property can be formulated more rigorously if we ask a simple

question, namely, whether it is possible to expand an s-space, without crossing a

to shape, it can only coincide with the minimum and the surface partitions in the

trivial case of a single closed convex polygon. Where we have at least two convex cells

linked by a door, or at least one reflex angle in a polygon, the endpoint partition

differs from both the minimum and the surface partitions.

By comparison to the endpoint partition, which provides us with informationally

stable units, the surface partition defines spatial units as a function of the alignment

and orientation of walls. In cellular plans, the surface partition coincides with the

minimum partition. In open plans, the surface partition diverges from the minimum

partition and captures the ambiguities and latent demarcations that govern the

potential subdivision of space. We propose to pursue this idea further through a

comparison of Fallingwater, the house at Riva San Vitale, the design for a Brick House

by Mies Van der Rohe, and the design of the Villa Valmarana by Palladio. The four

plans and their surface partitions are shown in figure 17.

The Villa Valmarana exemplifies a regular cellular plan, where the surface partition

coincides with the minimum partition. The clear definition of rooms, however, is

also based on another property, so obvious that it may not be noticed at first. All the

corners that define individual s-spaces are physically manifest as wall intersections.

By contrast, in all the other plans, the average proportion of physically manifest corners

ranges from about 1/3 to about 1/2. The lack of physical definition of the corners of s-

spaces may thus be treated as a distinguishing characteristic of various types of open

plan.
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Figure 20.  The divergence of an e-

space in the house at Riva San Vitale.
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Figure 19.  Expansion coefficients of s-

spaces in four house plans.

# discont. #s-spaces % manifest expansion
corners / space coefficient

Fallingwater   45 46   .333 .380
House at San Vitale   22 16   .486 .210
Brick House   38 24   .427 .021

Valmarana 104 17 1.000 .000

physical boundary, while preserving geometrical similarity. Furthermore, we chose

to deal with parallel expansions which occur while keeping one of the vertices of the

s-spaces in its place, as shown in figure 18. We then measure the number of such

expansions that are possible (holding one vertex stationary at a time), and we express

this as a proportion of the total number of vertices. We call this measure the “expansion

co-efficient” of s-spaces. When the expansion co-efficient score is low, the s-space

has few possibilities for expansion. When the co-efficient is high, the s-space can be

expanded in many alternative ways. The more expandable an s-space is, the more

ambiguous it will appear. The less expandable it is, the more it will seem well defined.

This measure reveals interesting differences between the open plans that are being

compared, as shown in figure 19. In the Brick House, practically all the s-spaces are

perfectly defined. The average expansion coefficient is as low as .021, even though

less than half of the corners that define s-spaces are physically manifest. It would

appear that the mode of spatial subdivision explored by Mies Van der Rohe creates a

tension between two different and independent properties. On the one hand, walls

extend beyond the limits of s-spaces, and physical corners are eliminated, so as to

suggest continuity and flow across the shape. While we are analyzing only the interior,

it is clear that the same device produces the sense that the interior “bleeds” to the

outside. The vessels of such “bleeding” are the extended boundaries themselves. On

the other hand, interior space is compartmentalized in clearly defined constituent

parts. While not sharing in the appearance of conventional rooms, these parts share

with rooms the property of non-expandability. By contrast, Fallingwater, not only

manifests fewer of the s-space corners physically, but it also produces s-spaces with

relatively high expansion coefficients. In would appear that in this case,  the free-

plan challenges the idea of discrete spatial units more fundamentally than in the case

of the Brick House. The house at Riva San Vitale produces relatively well defined

spaces in the greater part of its area, despite the uninterrupted potential movement

around the core. Poorly defined s-spaces only arise near the fireplace, at the point

where one of the corners of the outer square is truncated and articulated. These

results are summarized in table 3.

The local properties of the surface partition are, therefore, as interesting as those of

the endpoint partition and seem to help us to clarify different aspects of the interaction

between the shape of the physical body of the building, and the creation of a spatial

structure for potential movement.

Table 3. Properties of the surface

partition of four houses
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values in two houses.

40.19

The last local property of convex partition that we want to introduce can best be

understood by reconsidering the endpoint partition. Given the number of

discontinuities that are visible from an e-space, we may ask what is the minimum

number of convex areas that can be defined so as to encompass all these points. Only

in the case of a closed polygon would we get all the visible discontinuities to belong

to a single convex area. In most cases the number of convex areas needed to cover all

the discontinuities visible from an e-space will be greater, as shown in figure 20. We

propose to define this number as the “divergence” of an e-space.

In figure 21, we compare the divergence values of e-spaces in Falling Water and the

Brick House. Numerical information is provided in table 4. In the case of Falling
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Water, most e-spaces have a high divergence value. More particularly, the spaces in

the middle of the living area have a divergence value of 6. This suggests that in

Falling Water, the embracing quality of the wall boundaries, which are “fine-tuned”

to create alcoves for placing furniture, objects or seats, is combined with a property

of openness rather than enclosure. The number of different convex areas that are

implied by the visible discontinuities provides a sense of multiplicity rather than

simple unity.  On the contrary, in the case of the Brick House, the e-spaces with

higher divergence values are mostly located near thresholds, and to some extent around

the outer edges of spaces. The central space is characterized by e-spaces which have

lower divergence values. Thus, the Brick House suggests a greater emphasis on

finiteness, if not enclosure, despite the fact that boundaries are often seen to extend

beyond one’s field of vision. In fact, it may be appropriate to say that in the case of the

Brick House, boundaries, not space, enjoy continuity and flow.

# # mean max. min.
discont. s-spaces diverg. diverg. diverg.

Falling Water 45 45 4.05 7 1
Brick House 38 24 3.84 5 1

This comparison concludes our presentation of some local properties of the convex

partitions introduced in this article. In each case we have used our comparisons to

try to capture familiar properties that cannot always be clearly and rigorously defined:

centrifugal and centripetal arrangements, well defined or ambiguously defined sub-

spaces, multiplicity versus discrete enclosure. At times, we might have clarified a

substantive aspect of the chosen examples, but mostly we have used the examples to

introduce the theoretical and methodological ideas.

5 Concluding comments

This paper documents an approach to the refinement of the description of shape

and spatial configuration inside buildings. We anticipate that these methodologies,

as they are further developed, will contribute in several areas of inquiry, including

the study of how buildings become intelligible; the characterization of different design

styles; and the assessment of the effects of space upon aspects of building function

such as display, interaction and movement. These methods can assist in design

education as a tool for the interactive analysis of plans, and in the creation of libraries

of comparative formal analysis. Admittedly, we have not touched upon the more

difficult problem: how to retrieve descriptions of more complicated sub-shapes that

are implied by the overall building layout. This means that the relationship between

the compositional principles used by architects and the potential spatial experiences

that are engendered by buildings has not been properly addressed. It is possible,

however, that the partitions and properties introduced here may  assist a future

response to this larger task.

The methods of analysis proposed here are very laborious, because even simple plans

produce complicated partitions, and even simple properties require that many

relationships be identified and counted. Any analysis of substantial bodies of data is,

therefore, dependent upon the availability of computer programs for the automated

analysis of layouts. Such programs are currently under development on a Microstation

platform, through our collaboration with IdeaGraphix, Atlanta. As a consequence,
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this article has discussed a very limited number of examples and a small set of variables

of potential interest. The  implementation of automated analysis will allow us to test

whether the ideas introduced above reveal interesting spatial properties in larger

samples of data, and whether these properties can be consistently linked to aspects

of design style, building function and building use (4) .

Notes

(1) We wish to thank Bill Hillier and Phil Steadman for their comments on an earlier draft and Lionel
March for his encouragement. The first author acknowledges that the work of Dr. Sophia Psarra, at
University College London, on the relationship between built shape and the analysis of space according
to “space syntax”, has influenced the early development of ideas discussed in this paper.
( 2) To the best of our knowledge, details about the program and the theoretical arguments supporting its
development, or applied studies using it, have not been published yet. We are grateful that direct
communication has allowed us to remain in touch with some on-going work at the Space Syntax Laboratory.
(3) Hillier (1996) discusses the representation of spatial relationships according to all the linear elements
that can be drawn by linking any two vertices of a plan that are visible from each other, and by extending
the lines in both directions until they meet a wall. The generation of such “all lines maps” resembles the
first steps to the generation of the e-partition. There are two differences. The e-partition does not include
the diagonals but their extensions. It also includes the extensions of surfaces. The main difference, though,
is theoretical and conceptual. Hillier studies lines of potential movement and visibility. He analyzes lines
and their intersections as representing spatial configuration. We treat two dimensional spaces, and seek to
determine convex spaces that are informationally stable.
(4)  The work reported in this article, and the development of related software, is made possible by an
Academic Initiative Grant from the Georgia Tech Foundation, 1996-1998.
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