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0 Abstract
Built shape, initially defined as a finite set of positioned wall surfaces, is described in
relation to spatial configuration, defined as the underlying structure of potential
movements. Spatial configuration is analyzed by reducing the infinite number of
points that can be occupied by a moving subject, into a finite number of discrete
convex areas, each of which is stable with respect to the visual information about
shape that is available from inside it. Shape is reconstructed by showing how
itselements can be coordinated into a smaller number of sub-shapes based on its
relation to spatial configuration. "Space syntax" is treated as a geometry for the de-
scription of architectural space from the point of view of its configurational proper-
ties which are particularly relevant to the social function and cultural meaning of
layouts. The aim is to complement "space syntax" by contributing a theory of the
intelligibility of shape and spatial configuration which operates not so much at the
level of graph theoretical measures, but rather at the level of the recognition of ele-
ments and relationships that is a prerequisite for any graph-theoretic analysis.

1 Defining shape and spatial configuration
This is a summary of a presentation regarding the description of built shape and
spatial configuration. Only built shapes not involving curves are considered and the
discussion is limited to plans. The term “built shape” is used to refer to the set of all
wall surfaces of a complex. Surfaces are held to extend between free standing edges
and/or corners and not to intersect other surfaces except at their perimeter. Walls
can be represented as one dimensional lines with two sides, distinguished according
to the corresponding division of space. The term spatial configuration is used to
refer to the structure of potential movement and copresence as determined by the
placement of boundaries in space and by the connections and disconnections be-
tween areas that results from the presence of boundaries. This definition is further
clarified in section 3 below.

2 Towards a reconstruction of shape from the point of view of the mov-
ing subject
The main point of the presentation can be introduced as follows. Traditionally, shape
has been defined constructively. The simplest way to explain what I mean by the
constructive definition of shape is this: Imagine that you are about to copy a shape in
plan. The simplest procedure is to copy each surface by determining the position of
its defining discontinuities so as to be able to draw a line between them. Sometimes,
however, the placement  of the next surface can be determined from the position and
relationships of surfaces already drawn, by using the drawing instruments and by
applying geometrical knowledge. Indeed, the constructibility of figures by means of
operations involving a limited set of drawing tools, has been a topic of geometrical
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investigation from Euclid (1956) to Hilbert (1971). The more we can derive the en-
tire shape from a few elements initially positioned, the more we can argue that the
shape has a coherent structure, in other words, that the placement of one element
has logical consequences for the placement of others. This is often fundamental to
architects, not merely as a matter of technicality, but as a dimension of architectural
meaning which is inherent in the form. The obvious and familiar problem with such
definitions of shape is that they suppose a panoramic apprehension of all relation-
ships involved. Since buildings are subdivided and can never be seen entirely from
any single point, such apprehension is only possible by studying representations such
as plans and sections, and by reconstructing the form not as an image that corre-
sponds to a viewing point, but rather as an abstract schema in the mind. Thus, the
traditional constructive definition of shape does not seem to engage the experience
of architecture by the moving subject. I want to suggest some steps that may bring us
closer to the development of constructive descriptions of shape from the point of
view of a moving subject . The key is to show how partial information that is directly
seen can be coordinated into more complex patterns. I use the term coordination in
the way in which it is used by Piaget (1967), to refer to the establishment of complex
patterns of relationships on the basis of operations that can be repeated and reversed.

3 “Space syntax” is an architectural geometry
Before all else, clarifications are in order as to how such argument features in a dis-
cussion of “space syntax”. Hillier and Leaman (1975) and Hillier et al (1976) use the
term “syntax” to refer to rules that account for the generation of elementary, but
fundamentally different, spatial arrangements. Hillier and Hanson (1984) define syn-
taxes as combinatorial structures which order the world and also allow us to retrieve
descriptions of it. Consistent with the above publications, they propose that there is
a relationship between the generators of form and social forces. However, they then
proceed to develop techniques of syntactic analysis which can be applied to settle-
ments and buildings treated as individuals and not merely as members of generative
classes. This opens the way for subsequent definitions of the terms “space syntax”.
Hillier et al (1983) and Hillier et al (1987) define “space syntax” as a methodology, or
a set of techniques for the representation, quantification, and interpretation of spa-
tial configuration in buildings and settlements. Hillier (1996) shows how the key
configurational properties represented and analyzed by syntax, interact with con-
figurational rules, for example those affecting the shape of the perimeter of a cell or
the positioning of partitions inside it.

Quite clearly, the methodology has to be distinguished from the substantive theories
regarding the social functions and cultural meaning of built space advanced by Hillier,
Hanson or others. And while in the earlier work the formulation of generative princi-
ples was seen as a priority, we must now acknowledge that potential generative prin-
ciples are investigated more from the point of view of their effects and less from the
point of view of their own structure. They are studied from the point of view of their
implications concerning those properties of arrangement that the analytical meth-
odologies have brought to the fore. Where does all this leave us, regarding the defini-
tion of what we mean by “space syntax”? To say that “space syntax” is merely a set of
techniques does not do justice to the work. In so far as space syntax has defined
spatial configuration in terms of some tangible properties of arrangements, it is cer-
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tainly a theory of architectural geometry, or can be developed more firmly in that
direction. Here, we interpret “geometry” in a broad manner, to denote any theoreti-
cal account of the formal structure of the built environment, following the usage of
March and Steadman (1971).  Space syntax allows us to understand and describe
built space as a field of potential movement and copresence. The very definition of
spatial configuration proposed above assumes precise analytical and theoretical sig-
nificance thanks to “space syntax”. The description of spatial configuration requires
us to look at the movement sequences, changes of direction, intersections between
different directions, the presence of alternative sequences linking the same two ar-
eas, the occurrence of centers of convergence or domains of exclusion, and so on.
“Space syntax” has made this possible in three essential steps: first, spatial patterns
are represented as sets of linear elements of potential movement or convex elements
of potential togetherness. Second, systems of relationships are described according
to the permeable adjacencies of convex spaces, the overlap of convex elements, or
the intersections of  lines -linking elements according to the intersections of their
“isovist” has also been practice, following an adaptation of Benedikt’s (1979) ideas.
Third, graph-theoretic measures, such as “connectivity”, “integration”, “intelligibil-
ity”, and “choice” are applied to the systems of relationships thus established.

4 Interaction and independence of shape and spatial configuration
“Space syntax” has not traditionally sought to be “shape-discriminating”, as indi-
cated by the fact that the shape of the perimeter of convex spaces, or the form and
alignment of built edges at either side of an axial line, are not specifically taken into
consideration. The partial disregard of shape can to some extent be traced to the
idea that the level of spatial description that is relevant to analyses of the social func-
tions and cultural meanings of layouts is closer to the topological than to the metric
(Hillier and Hanson, 1984). At the same time, “space syntax” has not traditionally
been “shape-blind”. Syntactic descriptions distinguish between arrangements that
are topologically equivalent. Syntactic representations, contingent as the are upon
whether an axial line or a convex space can be extended, are quite evidently con-
strained by shape. More recently, Hillier (1996) has sought to bring shape into the
purview of the graph-theoretic measures of “space syntax” by redefining elements so
as to include not only convex spaces and axial lines, but also an underlying two di-
mensional orthogonal metric. His underlying aim seems to be to develop a frame-
work that allows us to handle metric and topological distances together.

From a technical point of view most of us are familiar with two problems arising at
the interface between “space syntax” and shape. First, how to determine the axial
map in cases where solids are sparse and poorly aligned. Second, how to determine
convex spaces in irregular free plans. These problems are not merely technical. They
concern the extent to which “space syntax” can assist our understanding of how built
space becomes intelligible, not at the level of graph-theoretic measures, but at the
level of basic representations. These representations are intimately linked to the de-
velopment of our intuitive comprehension of spatial phenomena. The underlying
question regarding the interaction of shape and spatial configuration would remain
open to theoretical debate, even if the technical difficulties are eliminated by resolv-
ing to use only the new representation presented by Hillier (1996) alongside the old,
in other words,  “all lines map” instead of the traditional “axial map”, and the “over-
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lapping convex spaces” instead of the traditionally discrete convex spaces. The new
representations take shape into account more systematically than the old, but they
do not describe it as an autonomous object of study. They help us understand the
consequences of the presence of shape but not how shape itself coheres in its own
right.  At the Georgia Institute of Technology, we have sought to develop new convex
representations of plans that help us to better deal with the description of shape
from the point of view of spatial configuration (Peponis et al, 1997). These methods
provide us with alternative point of departure for applying the graph-theoretic meas-
ures of “space syntax.” Here, I want to propose that the methods also provide us with
a foundation for developing a calculus to reconstruct shape “from the bottom up”,
that is from the point of view of the moving subject. This is the particular problem
raised earlier, and I want to show that it can be addressed in a framework which is
compatible with “space syntax”.

5 Convexity and informational stability with respect to shape
I will now proceed to introduce what we call the “endpoint partition” or e-partition
(Peponis et al, 1997). Given a plan not including curves, we draw two sets of lines: first
the extensions of the sides of reflex angles until they meet a wall surface; second the
extensions of extendible diagonals, also until they meet a wall surface. Here, a reflex
angle is one that is greater than 180o; a diagonal is a line that joins two discontinuities
without crossing a wall surface. As a result of drawing these lines, we produce a great
number of discrete convex spaces bounded by them. These spaces, which we call e-
spaces, that have the following significant property. While we remain inside the same
space and look around us, we can see the same set of discontinuities and the same set
of wall surfaces, whether completely visible, or occluding. As we cross the permeable
boundaries between these convex spaces, one or more discontinuities of built shape
either appear into our field of potential vision, or disappear outside it. If we are willing
to define a position according to the information about shape that is visually available
to us from a point, we can say that this partition divides space into a finite number of
informationally stable point-sets, and that it also helps us to reconstruct movement as a
pattern of potential transitions between one informationally stable point-set and an-
other. It will be noted that the manner of derivation of the e-partition resembles the
derivation of the “all lines axial map” presented in Hillier (1996). There are two techni-
cal differences: we include only the extensions of diagonals, not the diagonals them-
selves; we also include the extensions of surfaces meeting at a reflex angle. There is a
rather more significant conceptual difference. We seek to define informational stabil-
ity with respect to shape, not potential lines of sight and movement. The e-partition of
a simple shape is shown in figure 1.
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Figure 1.  A shape and its endpoint

partition.
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6 Convex pairs and convex spans
The second idea I would like to introduce is simply a test of whether two convex
entities are members of the same convex field. To enhance the relevance and appli-
cability of the test, I propose that we should allow straight line segments and single
points to be treated as limiting cases of convex entities, along side two dimensional
convex elements. Given two convex entities, we suppose that we place an immaterial
rubber band around them, without changing their position. If we can rubber-band
them together so that the rubber band does not cross or contain any wall surface,
then the two entities belong to the same convex field. From a mathematical point of
view we are asking whether the minimum convex hull that includes the two elements
crosses or contains wall surfaces. This test allows us to start from some convex ele-
ment and identify all other elements of a similar or dissimilar convex elements that
can be convexly paired to it. The set of all such elements I propose to call a “convex
span”. It will be understood that the convex span of an element is not necessarily a
larger convex space. The convex span can extend in several different directions. Here,
I will be concerned with two kinds of convex span: the convex span of an e-space
with respect to other e-spaces; and the convex span of a wall surface with respect to
e-spaces. The first kind of convex spans allows us to approximate something akin to
an adaptation of the “isovist”, by including not all points visible from one vantage
point, but all convex elements all points of which are visible from all points of a
vantage convex element. The second kind of convex span allows us to talk about the
visual exposure of entire wall surfaces to space. It is quite significant to the argument
that the increments of exposure of entire wall surfaces to our view, as we move about
a complex, are complete e-spaces and never parts of e-spaces. The convex spans of
an e-space and of a wall surface are shown in figures 2a and 2b respectively.

7 The coordination of wall surfaces into sub-shapes
Wall surfaces intersect at edges. We can chose to describe the two sides of a free
standing wall, as two surfaces meeting at angles of 360o. If we represent wall surfaces
as filled circles and construct a graph where a line represents an intersection be-
tween surfaces, the wall surfaces of a complex will form one or more rings of variable
size, as shown in figure 3. We can now introduce unfilled circles to represent e-
spaces, and use lines between such unfilled circles to represent permeable adjacencies
as we do with the representation of traditional convex maps. This is shown in figure
4. A third set of lines can be added to the graph. These lines go from a filled circle to
an unfilled one and indicate that the entire wall surface is visible from the corre-
sponding e-space. This rather complex graph is the conceptual foundation of the
calculus that I want to propose. For illustration, it is presented in figure 5. It would
be possible to develop an even more complicated graph, including links between e-

Figure 2.

2a: the convex span of an e-space

(ABCD) with respect to other e-spaces;

2b: the convex span of a wall surface

(XY) with respect to e-spaces.
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spaces which can be rubber-banded together into a single convex field. None of these
graphs needs to actually be drawn, once the ideas have been understood. The point
is that the analysis proposed considers relationships between different kinds of ele-
ments, and allows relationships of different kinds to be applied to the same elements.

Figure 3.  A shape and a graph showing

the relationships of incidence between

interior wall surfaces (filled circles).

As a first step towards the coordination of shape elements, we identify the largest sets
of connected wall surfaces that are entirely visible from at least one e-space.  These
sets can be treated as first order coordinated sub-shapes. Coordination, here, is sim-
ply based on the idea of simultaneous visibility. The eye can start at one end and
move continuously to the other, without ever leaving the unfolding wall surfaces.
The process is reversible. The reconstruction of a shape into first-order coordinated
sub-shapes is illustrated in figure 6. I use the word “reconstruction” because the
original definition of shape was entirely disaggregated.

8 Higher order shape coordination
We can now postulate the manner in which we can obtain higher order coordinations
of the elements of shape. Two issues are involved. First, whether two sub-shapes
meet at an edge or overlap along one or more complete wall surfaces. It would seem
intuitively obvious that an overlap is a more powerful way of relating two sub shapes

Figure 4.  A shape with its e-partition

and a graph showing the relationships

of incidence between interior wall sur-

faces (filled circles) and the relationships

permeability between adjacent e-spaces

(unfilled circles).

Figure 5.  A shape with its e-partition

and a graph showing the relationships

of incidence between interior wall sur-

faces (filled circles), the relationships of

permeability between adjacent e-spaces

(unfilled circles), and the relationships

between wall surfaces and the e-spaces

from which they are entirely visible.
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than a shared edge. Second, whether the e-spaces from which the sub-shapes are
constituted, are themselves convexly related, or whether they can only be linked
through the convex spans of intermediate e-spaces. The theory and analytic proce-
dure for dealing with these questions is still under development. Rather than discuss
ideas which have not yet found a clear formulation, I prefer to conclude with certain
remarks that demonstrate how this approach allows us to characterize shapes from
the point of view of their coordinative re-constructibility.

9  Proportional thresholds to shape coordination
Hillier (1996) has brought proportion within the scope of syntactic analysis by treat-
ing it, in the traditional manner, as a property arising when metric relationships can
be established. For example, he has observed that the internal distribution of “inte-
gration” in rhomboid, square, and elongated rectangular shapes, is different, if “inte-
gration” is measured according to the pattern of transitions between modules of an
underlying orthogonal metric. I want to argue that proportion can be defined syn-
tactically, as a function of the coordinative potential of the emerging informationally
stable convex units.

Consider the shape in figure 7. In many respects, it has the same configurational
structure as figure 6. However, the e-partition varies because e-partition lines pro-
duce more intersections, thus adding informationally stable spaces which were not
present in figure 6. Some of the added e-spaces have greater first order coordinative
effects. This is the simplest way of illustrating the occurrence of a proportional thresh-
old affecting coordination. Consider, however, figure 8. Here proportions have been
changes in such a way that two new, and very small, e-spaces have been added, which
not only have greater coordinative power, but can also be rubber-banded together
into a single convex field. It would appear that this new property, which was not
present in either figure 6 or 7, will facilitate higher order coordinations. The example
further helps to clarify how we can define proportional thresholds according to how
shape can be reconstructed by the moving subject. The possibility of  defining pro-
portional thresholds on the basis of the underlying relations of incidence and con-
vexity defined by the e-partition is quite significant from a theoretical point of view.
Since no metrics are involved, it can be argued that the examples presented here
illustrate a distinctive approach to the geometrical analysis of shape.

Figure 6.  A shape and the reconstruc-

tion of four first order sub-shapes con-

sisting of wall surfaces which share an

edge and are entirely visible from the

same e-space. In this particular case, it

is easy to see that the second order co-

ordination into two sub-shapes could

arise by linking the first order sub-

shapes which are visible from the same

e-space.

Figure 7.  A shape and the reconstruc-

tion of four first order sub-shapes con-

sisting of wall surfaces which share an

edge and are entirely visible from the

same e-space. The difference from fig-

ure 6 is the number of surface that....
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10 Concluding comments.
These, in summary, are the ideas I wish to bring to the consideration of the confer-
ence. I hope to have indicated how configurational analysis can be extended to deal
with the reconstruction of shape from the point of view of the moving subject. It
would seem that “space syntax,” as currently defined by the work of the “Space Syn-
tax Laboratory” at UCL, can be usefully complemented by other geometrical models
of space and shape, so as to deal, in a compatible framework, with issues that have not
yet been tackled in a concerted manner. In this way we can contribute to the devel-
opment of theories regarding the intelligibility of buildings. That such developments
are likely to make our analytic representations more design-relevant, by bringing
them closer to the concrete architectural object, should be evident. At the Georgia
Institute of Technology we are currently developing  a suite of analytic routines on a
Microstation platform. Our partners in this are “IdeaGraphix”, Atlanta. We have called
our developing software “Spatialist”. The first set of routines, “Partitions”, are al-
ready operational and will be demonstrated during my presentation.
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Figure 8.  A shape and the reconstruc-

tion of four first order sub-shapes con-

sisting of wall surfaces which share an

edge and are entirely visible from the

same e-space. The difference from fig-

ure 6 is not only that more surfaces be-

come co-ordinated but also that the two

e-spaces from which co-ordination is

achieved are themselves in a convex re-

lation to each other.


