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1 Introduction
Space syntax is a descriptive technique of spatial and configurational analysis devel-
oped at the Unity of Architectural Studies, University College London (Hillier et al
(1983), Hillier and Hanson (1984), Hillier et al (1987a), Hillier et al (1987b)). It
aims to describe space by means of a non-arbitrary  and reproducible representa-
tion. The understanding of morphological structures, the quantification and mod-
elling of configurational properties and the  comparison between different spatial
systems constitute its main purposes.

This approach considers space in terms of abstract properties of topological nature
rather than in terms of geometric measures. It describes spatial layouts regarding
the pattern of connections between spaces and quantifies the extend to which each
space is directly connected to other spaces.

Axial maps are graphical configurations introduced by Hillier and Hanson (1984) to
describe morphological properties of urban forms. These objects allow a quantita-
tive analysis of spatial layouts. The axial map is a planar connected configuration
consisting of the fewest longest straight lines covering all urban public spaces. These
lines correspond to the image of physical and visual continuity tested by people who
are static or in movement in the system. Figure 1 is a segment selected in Castelo, a
medieval part of Lisbon. This area shows an irregular urban layout characteristic of
traditional towns which have grown organically. It reproduces the informal arrange-
ment of vernacular site made up of blocks of outward-facing buildings with different
shapes, narrow streets, paths and small squares.

Figure 2 shows the corresponding axial map. The axial map provides information
about the pattern of connections between  spaces (i.e., the way the lines are distrib-
uted on the plane) and the connections of each space to all other spaces (i.e., the
intersections of each line to all other lines). No information in terms of areas and
distances is given. To make an axial map suitable for computation it must somehow

Figure 1.  A segment selected in Castelo,

Lisbon

Figure  2.  The corresponding axial map.

Figure  3.  Axial graph of the map in

figure 2.
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be converted into a set of discrete elements. The usual procedure is to transform the
map into a graph: the so-called axial graph (Hillier and Hanson (1984)). The axial
graph of an axial map is a graph in which vertices correspond to lines. Two vertices
are adjacent if and only if the corresponding lines of the axial map intersect. The
axial graph of the map of Figure 2 is represented in Figure 3.

Since graphs can be represented by 0-1 square matrices expressing the adjacency
between vertices, this gives a way of transforming an axial map into a set of discrete
elements suitable to be used as the input of an algorithm running on a computer.
suitable for computational proposes. The axial graph does carry information about
the connections of each line to all other lines of the map. However, all the informa-
tion about the way the lines are distributed on the plane is lost.

Consider the axial map of Figure 5. It refers to a segment selected in Alvalade, a
neighbourhood of Lisbon, which is represented in Figure 4. Alvalade was developed
during the 1940's with the purpose of expanding the city. The plan was conceived to
provide houses for about 45,000 inhabitants within different income groups. A con-
cept of urban form based on cells was elaborated into a hierarchical principle. Hous-
ing groups are arranged as distinct areas (based on the primary school at the heart)
and neighbourhood clusters (based on a major shopping and social centre sited on
main roads).

Note that the axial map of Figure 5 and the one of Figure 2 share the same axial
graph (Figure 3), despite having a different pattern of connections. Therefore, axial
graphs do not characterize axial maps. To abbreviate this topological problem, the
axial graph is complemented by a node map. This represents every intersection of
lines in the axial map as a node and every axial line segment as a connection between
nodes. Figures 6 and 7 show the node maps of the axial maps of Figures 2 and 5,
respectively.

Despite the pair (node map, axial graph) to be quite close to the axial map, character-
izing the node map encloses the same problems as characterizing the axial map itself.
In this paper we present a way of characterizing axial maps by means of an extension
of a local property that enables the description of the cell decomposition of the
plane induced by line arrangements. Line arrangements, that are particular cases of
axial maps, consist of finite sets of lines laying on a plane in which every two lines
intersect. These objects are studied within a mathematical theory known as arrange-

ments of (pseudo)lines (see Chapter 6 of Björner et al (1993)). This gives a model to
represent axial maps as sets of discret elements that makes configurational analysis
efficiently possible. The proposed model is also much closer from axial maps than
the usual representation by graphs.We hope, in this way, to give a satisfactory answer
to the above question of Hillier et al (1993).

2 Graphs and axial maps
To make axial maps suitable for computation we must somehow find a class of char-

acterizing objects which can be encoded or represented. An axial map is character-
ized by a given object if the object allows to recover all the information contained on
the map. No two different maps correspond to the same object. The encoding or
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Figure  4.  A segment of Alvalade, Lisbon.

Figure  5.  The corresponding axial map

of figure 4.

Figure 6.  Node map of the axial map of

figure 2.

Figure 7.  Node map of the axial map of

figure 5.
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representation of an object consists of an appropriate description of the object as a
sequence of symbols, in the sense that it can be used as the input of an algorithm
runningon a computer (for details see Garey and Johnson (1979)).

Clearly, the deeper the knowledge of a certain class of objects is, the more interest-
ing such class will reveal itself to be in handling axial maps. Especially, if that knowl-
edge is based on results having algorithmic counterparts. The objects used in the
literature to handle axial maps are two classes of graphs (Hillier and Hanson
(1984),Krüger (1989), (1990)): the node graph and the axial graph.

The node graph of an axial map is a graph in which each vertice (v) corresponds to
an intersection node (Nv ). Vertices v and u are adjacent if and only if there is a line
of the axial map containing Nv and Nu which does not intersect any other line along
the segment connecting Nv with Nu. The node graph of the axial map of Figure 8 is
represented in Figure 9. The above definition of node graph follows the traffic engi-
neers' convention. In the context of space syntax, the definition also includes a label-
ling of the vertices indicating the number of lines that cross on the corresponding
intersection nodes. This allows to recover all the lines of the axial map.We will use
the traffic engineers' definition since the knowledge of how many lines cross on each
intersecting node is irrelevant for the argument of this paper. We will use the traffic
engineers' definition since the knowledge of how many lines cross on each
intersectingnode is irrelevant in what follows. The axial graph of an axial map is a
graph in which vertices correspond to lines.  Two vertices are adjacent if and only if
the corresponding lines of the axial map intersect. The axial graph of the map of
Figure 8 is represented in Figure 10.

There are two obvious advantages of using graphs in dealing with axial maps. First,
graphs are easily encoded. Adjacency matrices, incidence matrices and adjacency
lists (see, for example, Papadimitriou and Steiglitz (1982)) are some practical ways of
encoding graphs. Second, graph theory furnishes an enormous amount of results
and a quite good number of efficient algorithms for a wide variety of questions con-
cerning graphs. Some of these questions are shown to be relevant in analyzing mor-
phological properties behind axial maps. An example is the concept of depth of the
vertices of a graph (Hillier and Hanson (1984)). The depth of vertice v is the sum of
the distances from v to all other vertices. (The distance from v to vertice u is the
number of edges of the shortest path connecting v with u). This measure on the
vertices of the axial graph captures the notion of integration on the corresponding
lines of the axial map.Vertices with low (high) depth values correspond to integrated
(segregated) lines.

For a more curious reader, we point out that the list of depths is not an invariant
under graph isomorphism. (If it were, the widely accepted conjecture stating that no
polynomial time algorithm exists for deciding whether two graphs are isomorphic,
would collapse!) Even for planar graphs (for which the graph isomorphism problem
is solvable in polynomial time) we can find non-isomorphic graphs with the same list
of depths. The planar graphs of Figure 11 both have depth values equal to 7, 7, 7, 7, 9
and 9 on vertices v1, v2, v3 , v4, v5 and v6, respectively.

Figure  8. An axial map.

Figure  9. Node graph of figure 8.

Figure 10.  Axial graph of the axial map

in figure 8.
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Although graphs possess the above described good features, obviously neither node graphs,
nor axial graphs do characterize axial maps. Also the pair (node graph, axial graph) is not
a characterizing object. This follows from the fact that, in general, a planar graph has
different immersions into the plane. As an example consider the axial map of Figure 12
which was obtained from a certain immersion into the plane of the node graph of Figure
9. This map has the same node and axial graphs as the map of Figure 8.

Among the different immersions of the node graph into the plane there is one that is
specially interesting. This is called the node map (Krüger (1989), Hillier et al (1993))
which consists of an immersion compatible with the axial map. The node map is no
more than the axial map itself where every line segment which does not have both
ends coinciding with intersection nodes has been deleted. The node map of the axial
map of Figure 8 is the planar representation used in Figure 9 to exhibit the node
graph. The pair (node map, axial graph) is quite close to the axial map. In fact, except
for the orientation of those lines (if any) which intersections occur on a unique point,
the reconstruction of the axial map is possible. However, the difficulties of using this
pair follow from the codification of the node map which encloses the same type of
problems as the codification of the axial map itself.

In the next section we introduce a class of objects which are suitable to be encoded, and
that allow to recover the shape and the way the regions induced by axial maps are linked
together. These objects consist of pairs of ordered sets derived from an orientation of the
plane where the axial map lays. There are two good features about using these objects.
First, the orders can be easily obtained and therefore encoding is efficiently achieved.
Second, these objects nicely fit in the context of arrangement of lines. Since the
pioneerwork of Grünbaum (Grünbaum (1970), (1972)) from the early seventies, this
subject has grown as a fruitful mathematical theory, and a quite reasonable number
of efficient algorithms have been developed (see Bokowski and Sturmfels (1989)).
which will certainly reveal usefull if used in studing morphological properties de-
scribed by axial maps.

 3 Arrangements of lines
A  line arrangement is a finite set of (affine) lines laying on a plane E, such that every
two lines intersect. In what follows we will only consider arrangements consisting of
at least three lines. We describe how to define certain orders on the set of lines and
on the set of intersection nodes of a line arrangement. We use the arrangement of
Figure 13 to illustrate the procedure.

Add to the arrangement an oriented line ( →l ), such that:

(i) all the intersection nodes occur in one of the two half planes of E\ →l ;

(ii) every line of the arrangement intersects  →l ;

(iii) the direction defined by any pair of intersection nodes is different from the di-

rection of  →l .

Note that (ii) and (iii) are always possible since we have infinite  directions in the
plane vs a finite set offorbidden directions.

Let the m lines of the arrangement be labelled L1<L2<...<Lm) by the order they meet
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Figure 13.  Defining orders for a line

arrangement.
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→

l . Maintaining its direction, move the line  →

l  towards the half plane where the n

intersection nodes occur and order them N1<N2<...<Nn as they are met by →l . Note

that this procedure can be implemented so to run efficiently. A line arrangement
with a pair of orders of lines and intersection nodes as defined above will be called a
labelled arrangement. Consider labelled arrangements consisting of three lines. One
can easily realize that there are three possible types of such arrangements, namely
type I, II and III, as represented by figures 14, 15 and 16.

Interestingly, it has been proved (see, for example, Theorem 6.6.4 in Björner et al
(1993)) that every line arrangement can be fully described by identifying the types
of all its three line subarrangements. More precisely, two arrangements,  A=(L, N),
and A'=(L', N') with m lines are isomorphic if and only if there are labels for A and A'
such that, for every i<j<k(≤m), the labelled subarrangements {Li,Lj,Lk} ⊆ L and
{L'i,L'j,L'k} ⊆ L' are of the same type.

4. Characterizing axial maps
We will now extend the above characterization of line arrangements to a convenient
definition of isomorphic axial maps. We describe how to construct a line arrange-
ment A=(L,

−
N ) corresponding to any given axial map AM=(L, N). First, consider the

case in which no line in L will end at any point of intersection with another. Let us
start with 

−
N : = N and expand every line of the map. Whenever a new intersection

node is created, add it to 
−
N . Be aware, when expanding parallel lines, to disturb

them slightly so that intersection will always be achieved. In this case, and as a conse-
quence, the underlying line arrangement is not uniquely determined. See in Figure
18 a line arrangement corresponding to the axial map of Figure 17.

Now use the procedure of section 3 to obtain the orderer lists (L,<) and (
−
N ,<). As

we did for line arrangements, let us call an axial map with these induced orders on L
and N a labelled axial map. For convenience, every configuration obtained by delet-
ing any set of lines of an axial map will also be called an axial map, even if it is
disconnected. There are seven different types of labelled axial maps with three lines.
In addition to those of types I, II and III, we have types IV, V, VI, and VII repre-
sented in figures 19, 20, 21 and 22, respectively.

 As we have refered above, comparing line arrangements amounts to compare the
corresponding three line subarrangements. By analogy we propose what seems to be
a reasonable definition of isomorphic axial maps. We extend this property to what
seems to be a reasonable definition of isomorphic axial maps. Two axial maps AM=(L,
N) and AM'=(L', N') with m lines are isomorphic if there are labels for AM and AM'

such that, for every i<j<k (≤ m), the labelled submaps {Li, Lj, Lk} ⊆ L and
{L'i,L'j,L'k} ⊆  L' are of the same type.

We thus have a class of objects which are easily encoded, that characterize axial maps.
These objects are: an ordered list of lines (L,<) = (L1, L2, ..., Lm); an ordered list of
intersection nodes (N,<) = (N1, N2, ..., Nn) and, for i = 1, 2, ..., n, the identity Ni ,

iN =
s

i
1
i
2
...iN ,  (1)

describing  the lines Li1 < Li2 <...< Lis  which intersect at node Ni.
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Figure 14. type I,

N1 = L1 ∩  L2 ∩  L3
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Figure 15. type II,

N1 = L1 
∩ L2 < N2 = L1 ∩L3 < N3 = L2 ∩ L3
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Figure 16. type III,

N1 = L2 
∩  L3 < N2 = L1 ∩L3 < N3 = L1 ∩  L3

Figure 17. An axial map
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We now consider the case in which at least one line will end at an intersection point.
We show how to adapt equality (1) in order to distinguish between lines that do and
do not end at node Ni. Recall how the direction of →

l  has been used to order the
intersection nodes. Suppose N1< N2< ...< Ni-1  have already been defined and that  →l
is now meeting the next node which is the intersection of lines Li1 < Li2 <...< Lis . In-
stead of defining iN =

s
i
1
i
2
...iN , consider each line Lij  as two half lines both ending at

Ni and rotate →l  always to the same side, say counter-clockwise, until a complete turn
is performed. When some half line  Lij   is met, let

l(ij) =

and define Ni as (see Figure 23)

Ni = Nl(i1 )...l(is )l(i1 )...l(is ) . (2)

Two axial maps AM=(L, N) and AM'=(L', N') are isomorphic if, besides being isomor-
phic according to the former definition, the sequences (2) assigned to any pair of
correspondingnodes in N and N' coincide.

We finish this section with the following remark. The proposed characterization of
axial maps, as in the case of line arrangements, does not distinguish an axial map
from any of its rotations. Moreover, which in some cases may turn out to be a more
serious situation, it cannot distinguish an axial map from its mirror image. It may be
that for some applications it would be desirable to consider the map as a more rigid
configuration in order that only slight pertubations would not be perceptible. This
can be achieved by adjusting the definition of isomorphic axial maps to an orienta-
tion of the plane given by a certain fixed referential. This amounts to fix once for all
the oriented line →

l  used to order the lines and intersection nodes. This way every
map will be consider as a labelled one.

5. Final remark
In this paper we propose a characterization of axial maps which allows maps to be
easily encoded and reconstruction efficiently achieved. We did not look into the use
of this model in terms of syntax analysis. However, we believe it to be an adequate
tool for a more specific definition of integration, leading to a more accurate quantifi-
cation of the spatial distribution described by axial maps.
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Figure 22.  Axial map of type VII.
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