
S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

30
P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

INTELLIGENT ARCHITECTURE

new tools for the three dimensional analysis of space and built form

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and
Alastair Turner
University College London, London, England

0 Abstract
This paper describes Pangea, a new software workbench developed to enable the
flexible analysis of three dimensional 'worlds' composed of objects and the spaces
between them. By developing a simple application in which 3-D shapes can be created
and edited, and in which each shape holds arbitary length lists of attribute data and
a software 'script', Pangea provides a customisable tool for the analysis of 3-D spatial
relations. Descriptions are given of the use of Pangea to develop a range of analytic
and design support tools including the development of isovists and axial maps within
three-dimensional models.

1 Introduction
Although in principle space syntax techniques can be easily adapted to represent and
quantify aspects of the three dimensional form of built space, there are at present
relatively few examples of this type of analysis. The analysis of three dimensional
built space is of interest for a number of reasons. The first is that although we are
constrained mainly to move in two dimensions the world that we perceive is three
dimensional. If we are interested in the way that buildings and cities are ‘intelligible’
to us then it is likely that an analysis of the three dimensional scene will be relevant.
Second, although many of the social aspects of a building’s function may depend
essentially on two dimensional relations in plan, the function of buildings as shelters,
environmental and climatic modifiers, the way they cast light and shadow and their
structural function depends on their three dimensional configuration. In this sense,
their total ‘architecture’ must respond to aspects of three dimensional configuration,
and there can be little doubt that this affects strategic design choices (Hillier & Penn,
1993). Third, although most ‘conventional’ multi storey buildings effectively ‘stack’
two dimensional plans on top of each other, architects are increasingly experimenting
with ways of dissolving the barriers between floors, using atria, ramps, sloping floors
and complex circulation strategies. It is likely that in order to analyse and understand
this sort of architecture that we shall be driven to analyse three dimensional
configurations of space. Whilst all these reasons may seem relatively prosaic, it is
certainly true that the architectural medium is three dimensional and any form of
analysis that really aims to unpack architectural design fully will need eventually to
represent and quantify three dimensional formal and spatial relations.

One of the main barriers to the analytic investigation of three dimensional aspects of
spatial configuration up until now has been the complexity of the analytic problem.
While representations remain fairly simple it is possible to construct examples by
hand, or at least to verify computer calculations by hand. However, as configurations
become more complex, even two dimensional overlapping convex spaces become

Keywords: configuration, computer,

design, Pangea, programming

Alan Penn

The Bartlett School of Graduate Studies

(Torrington Place Site)

University College London, Gower Street

London, WC1E 6BT

England

tel: (44) (0) 171 391 1739

 fax: (44) (0) 171 916 1887

e-mail: a.penn@ucl.ac.uk

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

impossible to handle without computers. Any of the potentially more interesting forms
of representation, such as isovists, become completely unmanageable for realistically
sized buildings.

At the same time, the range of possible forms of analysis in three dimensions is vast.
If anything it is possible to think of a larger number of potentially interesting forms
of representation and analysis for three dimensional than for two dimensional space.
And yet we know from experience that it is almost impossible to judge in advance
which the empirically ‘useful’ forms of analysis will be. This creates a problem for the
would-be analyst. Where should they begin?

The Pangea 3-d workbench recently developed with EPSRC/DTI funding is one
response to this problem. Given the investment needed in programming software for
any form of three dimensional analysis we decided to separate out, as far as possible,
the representation of three dimensional form, its construction, editing and viewing,
from the analytic parts of the software. We decided also that the analysis should be
‘user enhanceable’. That is, that the user at run time should be as free as possible to
amend and even create completely new forms of analysis without having to rewrite -
or even modify and recompile - the source code. The intention was that people who
do not have the programming skills to create three dimensional graphics packages
and user interfaces should be able to interact with and interrogate three dimensional
built form in ways that we could not possibly anticipate. In this sense our aim was to
create a ‘tool for thinking with’ aimed at analysis of three dimensional form and space.

In this paper we first review ‘conventional’ space syntax and in particular the type of
representations or ‘analysis maps’ that must be developed if we are to automate the
procedure. Next we look at a fundamental dilemma at the basis of space syntax
methodology. Many of its successes seem to lie in the move from continuous space,
which is different at every point, to discrete graph representations in which individual
‘spaces’ are held somehow to be uniform across a defined but finite area. We define
a methodological need, therefore, to be able to treat three dimensional built form in
terms of the continuous space pattern it defines which gives rise to different views at
every point, at the same time as being able to develop from it analytic representations
which can be considered as bounded volumes of space and which can be treated as
the elementary nodes in an analysis of spatial relations. Then we turn to the Pangea
workbench, describing its main features and the scripting language on which it is
based as one attempt to respond to these methodological needs. Finally we describe
the use of the workbench to create tools for spatial analysis. These descriptions are
purely by way of example. The uses to which Pangea has been put so far only scratch
the surface of what is possible.

2 Spatial representations
Conventional space syntax is based on a three step procedure. First a representation
is constructed; a map which reduces continuous open space to a finite number of
discrete ‘elements’ or ‘spaces’ which can somehow be considered to be equivalent
to each other. Conventional examples are axial, boundary and convex maps. Next a
graph is constructed in which each ‘space’ is represented by a node, and in which
nodes are linked together if there is some relationship between the spaces. The

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

relationship is defined according to a rule such as the existence of a relationship of
permeability or visibility between the two spaces. For instance, if a space is a room
and the relationship we are considering is permeability then a doorway between
two rooms would be represented as a link in the graph. Finally, we measure the
pattern properties of the graph constructed in this way. Depth and rings in the
graph are commonly measured in both local and global terms. Local measures
consider the way a space and its immediate neighbours relate and global measures
consider a space in relation to all other spaces in the system. The most empirically
useful global measure of depth is integration radius n. This might best be visualised
as a measure of the shape of the justified graph (in terms of its mean depth) from
the point of view of a particular node.

It is worth considering the construction of the representation maps carefully. During
the mid to late 1980’s the UAS devoted considerable effort to the automation of this
step of the process. This was seen to be of theoretical as well as practical importance
in that it would be hard to maintain that a methodology was objective unless it could
be satisfactorily automated. The main findings covered here were arrived at in the
‘Space Syntax as an Interactive Design Tool’ project between 1985-87, and were
embodied first in the Syntactica software package (1987) and then rewritten in
SpaceBox (1989). The theoretical value of these techniques has received its first major
test with the publication of Space is the Machine, and has yet to deliver real empirical
results although the trials that have been carried out to date are promising.

Put simply, the research discovered that conventional representation maps - the fewest
axial line map and the discrete convex space map, which were simple enough for
human researchers to construct and work with, were in certain cases undecidable by
computer. A number of approaches were tried, first to produce discrete ‘fewest and
fattest’ convex spaces. The algorithm to do this is apparently simple entailing finding
the nearest point on the surface of a building within the opposite quadrat for each
convex vertex (Figure 1).

The problem is that under certain conditions the simple algorithm needs to be
modified if the requirement to derive as few convex spaces as possible is to be met.
In particular there are occasions in which it is possible to reduce the number of
convex spaces by relaxing the requirement for the edge between spaces to be shortest
which is entailed by the ‘fattest’ rule. This alone would not necessarily have made
the procedure anything but somewhat inelegant, however there are occasions in which
‘second pass’ modifications to eliminate an edge and which result in other edges
being re-aligned, can have further implications for yet another edge in the system,
and the algorithm, faced with particular morphological conditions, can enter an infinite
loop. This appears to be a direct result of the two competing requirements - fewest
and fattest. Whilst it might seem possible to develop ever more sophisticated rule
systems to decide on the ‘optimal’ subdivision on the basis that human researchers
appear generally to be able to come to an agreement on this, it is possible to show
circumstances in which a particular convex subdivision is actually undecidable. The
obvious example is the simple cruciform room in which each wing is exactly the same
width and depth (Figure 2).

opposite quadrat

shortest line within
opposite quadrat

Figure 1. The simple rule to give a

minimal ‘fattest’ convex subdivision of

space.

Figure 2. In the simple cruciform

building which wing ‘wins’ only matters

when we consider it as a part of an

asymmetric global system, say with an

entrance on one wing only.

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

In this case it is impossible to decide which wing is to ‘win’ and become a single space
and which is to lose and become a pair of spaces. At first sight this might appear to be
a trivial case, however when the system is automated the computer will either be in a
position of randomly assigning the ‘winner’, or the algorithm will effectively be
dependent on the order in which the original plan is digitised. In either case, presented
with exactly the same plan data two researchers could in principle arrive at different
mappings and results, and this would have dire consequences for the claim of
‘reproducibility’ of the methodology. The problem becomes critical when we analyse
perfect grid cities.

The solution to this paradox was to eliminate the requirement that convex spaces be
discrete, and to allow them to ‘overlap’ (Figure 3). In one step this allowed a much
simpler algorithm, elimination of the undecidable situation, as well as making ‘intuitive’
sense of the nature of space - there are situations, as in the central space in the
cruciform room, where we are effectively in two convex spaces at once. It became
clear that there was a much closer relationship than we had previously realised between
built form and spatial subdivision, and between the continuous view of space in
which every point is different to all others and the discrete subdivision of space into
‘overlapping’ convex areas of essentially similar points. It is the faces of buildings and
their vertices that define convex spaces and areas of overlap.

a

b

a

b

zone of overlap

threshold

When we turned to the automation of axial mapping we were surprised to find almost
exactly the same situation facing us. Although under certain conditions it was possible
to define algorithms to produce very convincing ‘fewest/longest’ line maps, there are
a class of plans where it is possible to show that there is no single ‘correct’ mapping.
The procedure we developed entailed two stages. First we construct all possible
longest lines passing through the open space of a configuration, and then we remove
shorter lines that made no additional contribution to the reduction of depth in the
map, to leave the fewest, longest lines. The production of all candidate lines is relatively
simple, if exhausting. Longest lines will tend to be those that pass diagonally through
space, just touching and passing-by acute vertices on built form. It turns out that
there are also occasions where longest lines pass along the face of a form, or where
they terminate at a concave vertex on a form. To produce the full set of all possible
candidate lines merely requires one to join all pairs vertices to each other that can be
joined through open space and to extend lines past the vertices, if this is possible
without passing into a solid form, until they hit the nearest solid object. In fact we
can reduce the task slightly by only keeping lines that extend beyond at least one of
their generating vertices, unless both vertices are concave (the longest lines within a
closed square room will be from corner to corner). The problems occur at the second

Figure 3. Overlapping convex space in

which all spaces are maximal and

overlaps are considered as relations or

links in the graph.

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

���	

stage of the procedure, where we wish to remove lines to produce the ‘fewest’ lines needed to cover
the system. At this point it turns out that there are particular cases, especially in geometrically regular
systems, where two lines may be of exactly the same length and so it requires additional rules to be
applied to define which line should be eliminated. The most apparently reasonable rules pass through
a definition requiring the elimination of lines that make fewest depth reducing connections between
other pairs of lines in the map. The problem here is that this turns out to be a global problem, where
the decision to eliminate a line on one side of the map can have effects on subsequent decisions
elsewhere in the system. It is possible to show that these rules are essentially dependent on the order
in which the problem is processed, and this means that given precisely the same map, but with its
vertices represented in different orders the algorithm could come up with more than one distinct
‘fewest line’ axial mapping.

Our response to this paradox was to adopt the algorithmically simplest mapping - the all line map - and
to do away with the elimination stage all together. Again it seems that this map, which represents all
possible lines of sight and movement, may actually be more closely related to our perceptual experience
of space, as well as to certain fundamental mathematical properties of spatial configurations. For
instance, the pattern of integration in all line maps distinguish between the segments along a long axial
alignment in a grid, with those at the centre being more integrated than those at the ends of the
alignment. It is also possible to show that all metrically shortest routes between distant pairs of points
in large systems pass predominantly along segments of lines in the ‘all line’ map.

Two important realisations followed from this research. The first was that apparent simplicity of the
representation - discrete convex maps and fewest line maps certainly look simpler than overlapping
maps or all line maps - did not necessarily correspond to algorithmic simplicity. The second was that
the simple algorithm - an analytic equivalent of the ‘short model’ - could give rise to a representation
that was intuitively richer and perhaps in closer accord to our perceptions of space. This is somewhat
surprising, and suggests an important distinction is to be drawn between reductionism in the
representation itself and methods based on applying the principle of parsimony to the process of
analysis. It seems plausible that algorithmic simplicity may equate to an ‘antireductionist’ richness of
representation.

The principles involved in this new suite of representational maps began to strike chords with some of
the fundamental notions which gave rise to ‘syntax’ in the first place. The early work on generative
modelling of beady ring systems turned around the notion of the ‘short model’ and algorithmic simplicity
in a process. Why invoke a longer model when a short model accounts for the phenomenon? In this
there is a fundamental similarity between the generative and analytic approaches to syntax which
turns on the distinction between ‘forms’ - the elementary cell-space diad, for instance - and ‘rules’ -
such as the rules of aggregation which determine the placement of the next cell in the process. Part of
the stimulus to develop analytic representations lies in the hope that by representing and quantifying
the pattern properties of spatial systems it may prove possible to retrieve the ‘rules’ governing aggregation
that determine their global form.

In this way analysis aims at an explicit form of description retrieval in which the simpler the analytic algorithm,
the greater the range of possible rules that can be retrieved, and possible morphologies that can be dealt
with. At the centre of the development of the new representations were the anomalies and paradoxes faced
by the ‘conventional’ representations. And yet there still remain at least two issues - possible anomalies -
which confront even the new representational maps. These are the resolution of spatial deformations with
which we deal, and the related issue of continuous smooth curving form. Although the majority of built

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

���

form consists of straight facets and acute vertices when we are faced with continuous
smooth curves we have to approximate them by polygonal forms.

At the basis of these issues lies a fundamental dilemma faced by space syntax methodology.
Many of its empirical successes seem to lie in the move from continuous space, which is
different at every point, to discrete graph representations in which individual ‘spaces’ are
considered to be uniform across a finite area. Yet our experience of space as an observer
is largely of smooth and continuous transitions and changes as we move. It seems entirely
possible that the discrete graph is yet another example of the apparently simple, yet
algorithmically more complex representation. The fact that we have to convert all
continuous curves to faceted polygons, provides an example in which it would be possible
to devise situations where the resulting maps could differ depending on the starting
point and order with which one generated the facets. This shows that the step is essentially
arbitrary and suggests that it should ideally be eliminated.

There appears to be a need, therefore, to be able to treat three dimensional built
form in terms of the continuous space pattern it defines which gives rise to different
views at every point, at the same time as being able to develop from it analytic
representations which can be considered as bounded volumes of space and which
can be treated as the elementary nodes in an analysis of spatial relations. However,
eventually we shall need to be able to move around and analyse three dimensional
form in arbitrarily small steps. Taken together with the fundamental distinction
between ‘forms’ and ‘rules’ this gave rise to a specification for a new kind of analytic
tool or 3-d ‘workbench’ as well as to the first analytic uses to which such workbench
could be put. In particular Gibson’s (1979) notion of the ‘optic array’ and Benedikt’s
(1979) translation of this into the ‘isovist’ provided useful tests of the ability of the
workbench to help develop and carry out new forms of analysis.

3 The Pangea workbench
The Pangea workbench is a simple programmable 3D CAD application (Penn et al
1996a; 1996; 1995). The application is geared to producing 3D models, and has no
conventional 2D drawing capability. The user interface is straight forward (Figure 4).
When the application is launched and a new ‘world’ opened a toolbar appears at the
top of the screen containing a number of simple primitive solid objects such as cubes,
cones and spheres, as well as more complex tools for building ‘walls’ and extruded
polygonal shapes. A statusbar at the bottom of the screen gives feedback to the user
on his actions and precise metric information on mouse location, or the location and
size of selected shapes. The main body of the screen contains four windows each of
which shows a view of the start-up world containing a floor, a light source and the
cameras (whose view is shown in the other three windows).

Shapes are created in the world simply by selecting the appropriate tool and then
clicking and dragging on the floor to set the dimensions of the shape. Once a shape
has been created it can be selected and moved, resized or rotated merely by dragging
at the appropriate handles. Other tools in the toolbar allows a shape’s vertices to be
selected and moved independently (‘tweaked’); new vertices can be added and
‘windows’ cut through objects. Once a world has been constructed it is possible to
steer a camera through it in a real time walk through.

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����
Camera

Floor

Light

ToolbarPrimitive Objects Scale Tool Intelligent Toolkit Toolmaking Tool

Statusbar

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

3.1 Attribute properties and scripts

Every shape in the world has a list of properties which we call its ‘attributes’. These
can be viewed and edited in the statusbar. Attributes include a shape’s location and
the dimensions of its bounding box, its colour and opacity, the type of tool that created
it, its number of faces and a unique personal identifier (PID). The list of attributes
can be extended by the user, and any type of data can be stored as an attribute and
modified by the user.

Pangea differs from other 3D CAD packages, firstly, in that it is relatively easy to use,
and secondly, in the way that it is possible to programme the world by allowing every
‘shape’ to carry a ‘script’ which gives it a behaviour. In this it is similar to programs
like HyperCard and SuperCard, but with the difference that instead of buttons or
graphics we have fully three dimensional shapes. A Pangea script is based on the
concept of ‘message handling’. Every object in Pangea including each shape, window
and the Pangea application itself, has a script whose job it is to respond to messages
from the user or from other objects. For example, when the user clicks on a shape
with the ‘browse’ cursor the shape receives ‘mousedown’ and ‘mouseup’ messages. If
the shape’s script contains a mousedown or mouseup message handler it will carry
out its instructions. A message handler takes this form:

on mouseup

beep

end mouseup

If the shape’s script does not have the appropriate handler it passes the message up
to the current window, which in turn will either execute its instructions if it has the
handler or pass the message up to the Pangea application’s script. There are a large

Figure 4. The Pangea user interface.

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

number of standard messages that the scripting language can respond to (‘mouseup’
is one), but a user can simply declare a new message by writing its handler into a
shape’s script as follows:

on jump

moveby 0,.5,0

paint

moveby 0,-.5,0

paint

end jump

The shape will now respond to the message ‘jump’, when it receives it, by jumping up
and down. If we draw a second cube and give it the following script it will send the
‘jump’ message for us:

on mouseup

send jump to shape id 1492 [use PID of the cube with the �jump�

script]

end mouseup

Messages can be sent to and received from four main sources: the user - mouse and
key board events are all sent as messages and a dialogue box can be used to ask the
user explicit questions; the system - for instance when two objects bump into each
other an ‘intersected’ message is sent to each of them; other objects through scripting,
and; external applications. This allows data to be sent to and received from
spreadsheets, CAD packages and databases as well as purpose made external
applications.

The ability of shapes in the world to send and respond to messages is at the core of
Pangea’s functionality. A wide range of behaviours can be constructed in Pangea worlds,
including the ability to analyse the properties of two and three dimensional spatial
configuration. It is by means of messages and the responses they engender in shapes
that ‘rules’ can be attached to the behaviour of ‘forms’.

3.2 Structuring information and collection

In order to handle large and relatively complex data sets we had to develop ways of
allowing the user to structure that data flexibly. It seemed likely that apart from data
on building form, a dataset might contain different types of object - furniture, shell
and core might all need to be looked at separately and together for instance - or
empirical data on patterns of space use or occupancy. To help do this Pangea
incorporates two features targeted at the information creation and storage
requirements of 3-d models: a method for grouping components into sets, and an
automatic inferencing tool for clustering similar objects together.

In traditional CAD drawing sets ‘layering’ conventions are used to store information
of different types separately, and to give access to appropriate parts of the whole
information store to allow concurrent work by different members of the design team.
Layering effectively reproduces the paper systems that predate CAD in which different
layers of tracing paper would be used to store different categories of information;
steelwork, concrete work and masonry, for instance, or piped water services, drainage
and wiring. By storing these on separate layers of paper different people could work

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

on the same part of the building at the same time, the data could be structured into
smaller and more manageable groups and visual clutter could be reduced. The
problem is that by separating the different layers conflicts between them become
harder to detect.

Pangea has replaced the concept of the layer with the concept of the ‘collection’.
Collections behave rather like mathematical sets. A single shape can be a member of
a number of collections - a partition may be in the ‘impermeable’, the ‘internal’ and
the ‘full height’ collections all at once. This makes for a far more flexible way of
storing data without the need to reproduce new object instances in different layers
so reducing the size of the ‘world’. Collections can be hidden to remove visual clutter,
and their members can be addressed directly - it is possible to iterate through
collections and send script messages to each member in turn. They have turned out
to provide an important method for structuring information, and yet are generic in
that they do not impose a particular convention, but allow almost any indexing system
to be implemented.

3.3 Clustering

The second feature tackles a critical problem in selecting an classifying the objects
in a dataset. The approach we have adopted in Pangea is to build a component
inferencing tool which can begin to recognise similar and different groups of
components, based on their geometry and any other attributes. The clustering tool
allows the user to cluster objects in the world into groups according to their similarity
in an n-dimensional vector space in which each attribute is a dimension. Figure 5
shows the clustering tool dialog which allows selection of attributes and clustering

Figure 5. The clustering tool dialog box.

Selecting the members of
which “Collection” to Cluster

This is the choice of
attributes to Cluster with

These are the attributes
chosen to Cluster with

Initiating the
Clusterer

Setting the “Specificity” of the
Clusterer, will affect how many
new collections are created

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

specificity. The tool automatically retrieves the attributes common to a collection,
and the user chooses the particular attributes which they feel help define the set of
objects they are interested in. For example, the user may feel it is helpful to start by
looking at the overall dimensions of objects, and so cluster the objects in the world on
the attributes of height, width and depth. In a building this would sort out the tall
thin, the wide flat and the cuboid components, and insert each set of collections
according to aspect ratio.

It may also be useful to group by other attributes, for example, colour. The clustering
tool allows the user to cluster on any set of attributes at the same time: so they may
cluster on dimensions, colour and a user defined attribute such as component cost.
Alternatively, they may cluster on the colour independently of the dimensions, so the
original set of objects is sliced in different ways. The user can then combine these
sets as they desire. The user may choose an existing subcluster, such as ‘Large Objects’
and cluster within that set for colour. All these possibilities make the clusterer a flexible
tool for searching and grouping operations of the sort that need to be done when
moving from the purely geometric model needed for visualisation towards the
intelligent type of model needed for analysis.

3.4 Drag and drop

Pangea supports ‘drag and drop’ for properties such as attributes, scripts and textures,
so the process of adding information into a collection of objects is very simple (Figure
6). This makes it possible to select each collection in turn - say the ‘tall thin’ components
and give all the components attribute information needed for, say, columns in one
drag and drop action. The wide flat components might be given slab attribute
information, or an appropriate script, and so on.

DRAG

DROP

Script inserted
into object

OR
Attributes inserted
into object Scripts or Attributes

on Desktop

Figure 6. Drag and drop of attributes,

scripts, textures or whole components

such as the ‘isovist camera’.

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

An extension of the ‘drag and drop’ metaphor allows the user to export a whole building
or component, including specific attributes, textures and scripts as a file. This file
can then be dragged from the desktop into a world and inserted complete in one
action. An ‘on inserted’ message handler in the component’s script allows it to set up
specific requirements it may have of the ‘world’ into which it has been placed. This
allows an inserted component to create appropriate collections required by its script,
or to make checks on its placement and ‘snap to’ other components or grid locations.
This allows one to develop specific objects that carry out a kind of analysis and then
to drop them into a model world in order to execute the analysis.

3.5 Communications with external applications

In order to exploit existing software and to make the most of the potential offered by
the Pangea 3-d interface without having to completely rewrite existing analysis
applications, Pangea has a range of methods for importing and exporting data,
including reading and writing files from scripting, DXF import and export to allow
file transfer to most CAD packages and open communications using Dynamic Data
Exchange (DDE) and AppleEvents. Using DDE items of data can be simply imported
and exported using the ‘fetch’ and ‘post’ operators in the scripting language and this
is useful for simple communications with spreadsheets or databases (see the urban
masterplanning example below). The scripting ‘tell’ operator has been devised to
provide a simple and explicit method for setting up sequences of interactions with
external applications. For instance, scripts can be run in one of two ways, either
directly, although this is limited to scripting calls that have one or less parameters, or
by loading the whole script as the data part of the communication and the keyword
‘runscript’ as the command. An example is given below of the kind of commands
Pangea can accept as a Server. First, a connection is opened to Pangea with a specified
document, then data are sent in multiple and single parameter forms, finally the
connection is closed.

on mousedown

tell "pangea","aab.chi" --open connection with Pangea �aab.chi�

senddata "send rotateby to shape id 10156 with 0,10,0"

 to "runscript" --multiple parameters

senddata "0" to "paint" --only one parameter

end tell --close connection with Pangea

end mousedown

A feature of DDE that we have found valuable is that it allows communications with
Visual Basic applications. This gives access to a simple interface for 2-d GUI design
and construction. Dialog boxes, text fields and simple charts are all easily set up in
Visual Basic and can be directly linked to Pangea both as client and server.

3.6 The 3-d crosshair and the scriptable tool

In order for an application to be simple to use it is important to minimise the number
of tools and modes available to the user. However, in the kind of applications envisaged
for Pangea, being too restrictive could make it hard for particular user requirements
to be fulfilled. In order to try and overcome this we have allowed access within the
scripting language to a 3-d crosshair cursor which ‘sticks’ to, and tracks over, surfaces
of objects in the world.

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

By catching mouse and keyboard events via scripting the user can access information
about the 3-d world underneath the crosshair. For instance, the location of the point in
the world underneath the crosshair, the object underneath the crosshair and the index
of the closest vertex to the 3-d point can all be caught. One also receives messages
when the crosshair moves from one polygon to another over the surface of objects.
Using this information it is possible to create interactive tools to accept mouse and
keyboard events and to create new primitive objects or new kinds of operation. Tools
have been developed in scripting that ‘paint’ on the bitmap on the surface of shapes in
the world, Figure 7, and that create quite new kinds of tools such as lathes or blankets.
A simple script showing how one can access 3-d information about the world when a
user presses the mouse button and use this to create a new tool is described in Penn et
al 1996, and demonstration examples are given in Penn et al 1996a.

This feature provides a means by which users can create their own tools, and implicitly
their own applications, using Pangea as the basis. This could be especially flexible if
used in conjunction with the ‘dynamic data exchange’ methods described
previously.The Pangea workbench is a simple programmable 3D CAD application
(Penn et al 1996a; 1996; 1995). The application is geared to producing 3D models,
and has no conventional 2D drawing capability. The user interface is straight forward
(Figure 4). When the application is launched and a new ‘world’ opened a toolbar
appears at the top of the screen containing a number of simple primitive solid objects
such as cubes, cones and spheres, as well as more complex tools for building ‘walls’
and extruded polygonal shapes. A statusbar at the bottom of the screen

Figure 7. In-situ bitmap editing using the

scriptable tool.

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

3.7 Optimisation for urban masterplanning

A range of test applications aimed at strategic design problems have now been built
using the workbench. For instance, Pangea applications have been developed for
engineers Battle McCarthy and architects Richard Rogers Partnership to investigate
environmental implications of building density and use in a large urban developments.
In a masterplanning project for Zaanstad, a town on the northern periphery of
Amsterdam, an analysis of likely energy demands resulting from land use mixes was
carried out in conjunction with conventional space syntax analysis and advice on
spatial structure (Battle McCarthy, 1996). By linking a model in Pangea to a
spreadsheet assessment package, information on land use and density acquired directly
from the model was used to produce expected daily and annual profiles for population,
electricity, cooling and heating demand. Figure 8 shows the Zaanstad masterplanning
model linked to population prediction calculations and those for energy demands
through time of day in an Excel spreadsheet, on the basis of quanta of different land
uses assigned to building blocks. As land uses are changed by changing a block’s
colour, or building height is changed, the spreadsheet calculates the overall impact
on the energy demand profile through time of day. The analysis was fed back in
graphical form to the designers and so allowed a series of factors to be taken into
account at once during the early ‘strategic design’ stage when both building form
and land use distribution were being decided.

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

Figure 8. The Zaanstad masterplanning

model.

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

3.8 Intelligent toolkits

Although the system described above allows the user to assess the impact of their
decisions, due to the number of building units involved, the time involved in assessing
even a small range of the possible layout options would be enormous. In order to
help tackle this type of problem Pangea includes a range of ‘intelligent’ toolkits which
can be set up and called using scripts. Three main types of tool are available: Genetic
Algorithms which, analogously to genes and the ‘survival of the fittest’, mutate,
recombine and test successive populations, and so evolve relatively ‘good’ solutions
to particular problems; Neural Networks, which are loosely based on the way that
neurons connect up in the brain, and lend themselves to pattern spotting, classification
and simple control procedures; and, Morphic Searches which provide very simple
way of finding optima in rugged fitness landscapes. In addition to these, scripting
lends itself to writing simple and fuzzy rulebased systems.

For the Zaanstad project a Genetic Algorithm (GA) was developed to investigate a
large number of land use allocations and to ‘evolve’ these to produce a ‘good’ land
use plan based on the features assessed by the spreadsheet. Genetic Algorithms in
Pangea are objects, similar to a shape - a cube or a sphere - and are scripted in exactly
the same manner. The land use of each building block in a prospective plan was
easily encoded for a GA since all the information needed to evaluate a design had
previously been passed to the spreadsheet. The fitness of the plan was assessed using
the spreadsheet and so the details of the fitness function are relatively open to scrutiny
and modification by the engineers who wrote and are comfortable using spreadsheets.
We have found that the discipline imposed on the user by the spreadsheet as a means
of defining the fitness functions is an effective means of satisfying the constraints for
using a GA - that we can encode the problem (the specific properties of a design in
this case), and that we are able to assess the value, or fitness, of an encoding.

Once a decision has been made to use a GA from the Intelligent Tools, the Pangea
scripting language offers the user an easy method to interact with the GA (see example
script below). The user can adjust the attributes of the GA as necessary (such as
deciding the number of generations the GA should run for or the size of gene pools).
However, relatively little understanding of the internal workings of the GA code is
required of the user. They are encouraged to experiment with the system through
the simple scripting front end. The user must also provide a fitness function, called
GetFitness. This allows the user complete freedom in the way they specify the fitness,
either internally within scripting or through calls to external applications or by means
of a combination of these.

For the Zaanstad problem, the GA optimised a combination of population flux
and electricity demand to maintain a constant balance throughout the day. As
such, this is only a simple example problem. Battle McCarthy describe how they
intend to extend their analysis to cover aspects such as balancing the cost of social
housing while maintaining a high quality of public space. This involves
incorporating multi-objective analysis in which several criteria are optimised at
the same time (Kingdon & Dekker, 1995).

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����	

on mouseDown -- Initialise the GA attributes

 set the attribute "maxgenerations" to 50

 set the attribute "numpools" to 1

 set the attribute "poolsize" to 40

 set the attribute "numchromosomes" to 1

 set the attribute "numgenes" to 256

 set the attribute "genetype" to "integer"

 set the attribute "minvalue" to 1

 set the attribute "maxvalue" to 4

 set the attribute "crossover" to "Uniform Crossover"

 RunGA -- Run the GA

end mouseDown

on GetFitness pool, individual

-- Find out the fitness of a chromosome

-- First update the building�s usage according to the

--values of the genes on the chromosome

 put "1" into i

 repeat for each shape s in collection "z"

 GetGeneValue pool, individual, 1, i

 put the result into TheUsage

 set the attribute "usage" of shape id s to TheUsage

 put (i + 1) into i

 end repeat

-- Second, work out the area used for each usage type in the development

 put 0 into OfficeArea

 put 0 into RetailArea

 put 0 into HousingArea

 put 0 into LeisureArea

 repeat for each shape s in collection "z"

 put the attribute "usage" of shape id s into TheUsage

 put the attribute "area" of shape id s into TheArea

 if TheUsage is "1" then

 add TheArea to OfficeArea

 end if

 if TheUsage is "2" then

 add TheArea to RetailArea

 end if

 if TheUsage is "3" then

 add TheArea to HousingArea

 end if

 if TheUsage is "4" then

 add TheArea to LeisureArea

 end if

 end repeat -- Third, tell Excel the area for each usage type

 post "Excel", "Zaanstad", 4, 8, OfficeArea

 post "Excel", "Zaanstad", 4, 9, HousingArea

 post "Excel", "Zaanstad", 4, 10, RetailArea

 post "Excel", "Zaanstad", 4, 11, LeisureArea

-- Finally, ask Excel how �fit� this mix of areas is

 fetch "Excel", "Zaanstad", 43, 25

 put the result into Fitness

 return Fitness

end GetFitness -- Excel is a registered trademark of Microsoft Corp.

Genetic Algorithms lend themselves not only to optimisation problems, but also to
encoding and evolving generative models and rule sets as an analytic tool, however,
to date we have not experimented seriously with this.

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

����

4 The Isovist Camera
A simple analytic tool, the ‘Isovist Camera’, has been developed in Pangea specifically
for use in analysis of visual fields in three dimensional space. The isovist was first
proposed by Benedikt as the “set of all points visible from a given vantage point in
space and with respect to an environment.” (Benedikt, 1979). The notion of the isovist
is partly based on concepts developed by Gibson (1979), whose research into perception
psychology considers a person standing in a room containing different objects and asks
how that person perceives the environment. Gibson suggests that the ‘optic array’
describing the sum total of all of the rays of light bouncing off the surrounding surfaces,
entering the eye, and forming a 2-d image on the retina must be both what actually
enables us to perceive the environment in the first place (for this is how the eye works),
yet can also be used to represent what is either visible or occluded to an observer.

The isovist camera is based on a Pangea camera, a scriptable shape which brings a
window with it showing what can be seen from its particular location and viewing
direction. The camera’s script rotates the camera about a vertical axis through 360
degrees, in small steps, and at each step it picks the point at the centre of its view and
finds the location of the face of the object it can see. It uses this series of points to
construct a new extruded polygon representing the ‘isovist’ from that camera location
as a new shape in the world.

on mousedown

--SET UP THE SAMPLING RESOLUTION OF THE ISOVIST BOUNDARY

put the attribute "Resolution" of me into steps

put (360/steps) into degs

repeat with counter = 1 to steps

rotateby 0,degs,0

paint 4

--PICKING THE POINT

getwindowsize

put the result into ws

put (item 1 of ws)/2 into wx

put (item 2 of ws)/2 into wy

put wx & "," & wy into fred

pickpoint fred

put the result into pt

--ADDING THE POINT TO THE LIST OF VERTICES OF THE ISOVIST

if pt = "NO" then

donothing

else

put (item 4 of pt) into testid

put (item 1 of pt) into testx

put (item 2 of pt) into testy

put (item 3 of pt) into testz

put testx & "," & testy & "," & testz into testVtx

if testid = previd then --pickpoint on same face:

ignore

put "same poly"

put testVtx into prevVtx

else

if counter = 1 then --first point

put "first point!"

put testid into previd

put testVtx into prevVtx

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

put testVtx into firstVtx

put testVtx into lastPt

else

put "new poly" --new face so record the location

put list & prevVtx & "," & testVtx & "," into

list

put testid into previd

put testVtx into prevVtx

put testVtx into lastPt

end if

end if

end if

end repeat

--MAKING THE ISOVIST SHAPE

make "extrudedpolygon",list,0.01

put the result into s

end mousedown

The isovist camera can then be scripted to move along a predefined path and construct
isovists at regular intervals to produce a ‘Minkowski model’ (Benedikt, 1979), or
different parameters of the isovist can be calculated such as its area perimeter ratio.
The latter turns out to be particularly interesting in the first analyses that have been
carried out of using the new isovist camera to look at the distribution of interacting
groups in a building interior. A model of a floor of Company X’s building (see Penn,
Desyllas & Vaughan, 1997, in these proceedings) including furnishings, storage and
partitions at different heights (Figure 9).

The isovist camera was then dragged into the model and located at different plan
positions (Figure 10), as well as at seated and standing eye heights. Some positions are
more strategic and obtain better views than others, and measures of the shape and size
of the isovist can quantify these differences. In particular, the area-perimeter ratio
measures the relative ‘fatness’ or ‘spikiness’ of an isovist. If we consider the effects of
the built form in constructing or obstructing our awareness of people as we move
through an environment, it seems possible that this type of measure may be informative.

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

Figure 9. Standing height view of

Company X’s open plan office areas.

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

Figure 11. Scattergram of total observed

people standing, plotted against the area/

perimeter ratio of all isovist locations, taken

at seated eye height, (excluding isovist

locations C & I). r=.89, p=.002.

. 7

.8

.9

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
People Standing

A
re

a
/ P

er
im

et
er

 R
at

io

y = .041x + .631, R-squared: .795

In an early study Conroy counts of numbers of standing people at each of those
locations were found to correlate well the area-perimeter ratio of the isovist, albeit
with some anomalous results (Figure 11). It seems possible that the area-perimeter
ratio may be measuring the ability of those passing down the main through-route
adjacent to the atrium to be seen and ‘recruited’ into conversation by those at desk
locations. If one passes through a spiky isovist one only gains glimpses of those one is
passing, whilst if one passes through a ‘fat’ isovist one may be visible for long enough
to allow recruitment to take place. If this is the case, then it suggests that we need to
understand the way that the pattern of movement brings one into the isovist field of
those seated at their workstation, and how this varies temporally as one moves about
the system. This would require ‘conventional’ syntax representations that have been
found to relate powerfully to patterns of movement to be brought into the same frame
as ‘static’ isovist fields from workstations. Although these results are purely preliminary,
they suggest that there may be considerable scope in extending the range of syntax
methods from discrete to continuous representations and in unifying static and
dynamic descriptions of configurational properties within a single analytic framework.

One of the main objectives in developing Pangea was to begin to prototype these
kinds of analyses. By constructing a full model of the spatial and formal configuration
of an environment, and giving the researcher the means to develop new analytic tools
that can move about the environment and analyse what is visible from any point
within it, Pangea may make it possible to address issues more directly related to the
egocentric and perceptual than have been possible to date.

Figure 10. Seated eyeheight isovists at

different desk locations in Company X.

Alan Penn, Ruth Conroy, Nick Dalton, Laura Dekker, Chrion Mottram and Alastair Turner • Intelligent Architecture

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

Acknowledgments
Pangea was developed with funding from the Engineering and Physical Sciences Research Council of the UK and the Department of Trade and

Industry under the Intelligent Systems Integration Programme by the Intelligent Architecture Project (EPSRC GR/J33609 IED4/8003). The project

consortium consists of Avanti Architects, Broadgate Properties PLC, Bovis Construction Ltd., Criterion Software Ltd., DEGW London Ltd., Oscar

Faber, PowerGen PLC, Richard Rogers Partnership, Qualum Ltd. and the Bartlett School of Architecture and the Department of Computer Science

at University College London.

References
Battle, G. & McCarthy, C., (1996) Multi-source synthesis: Dynamic Cities, in Architectural Design, Architecture on the Horizon, Academy Press,
London, July-Aug, 1996, III-IX;
Benedikt, M.L. (1979) To take hold of space: isovists and isovist fields, Environment and Planning B, Planning and Design, Pion, London, 1979;
Dalton, N. (1989), SpaceBox software package developed at the UAS, UCL, London, 1989;
Gibson, J. (1979), The ecological approach to visual perception, Houghton, Boston, USA, 1979;
Hillier B., & Penn A., (1993) Virtuous Circles, Building Sciences and the Science of Buildings: using computers to integrate product and process in
the built environment in Informing Technologies for Construction, Civil Engineering and Transport, in Eds., Powell J. A., & Day, R., Brunel with
SERC, London, 1993, pp. 283-300. republished in The International Journal of Construction Information Technology, 1:4, 69-92, Salford, 1993;
Kingdon, J. & Dekker, L., (1995) The Shape of Space, Technical Report, RN95/23, Department of Computer Science, University College London, 1995;
Penn, A. (1987), Syntactica, software package developed at the UAS, UCL, London, 1987;
Penn, A., Conroy, R., Dalton, N., Dekker, L., Mottram, C., Turner, A., (1995) Intelligent Architecture: User interface design to elicit knowledge
models, in Applications and Innovations in Expert Systems III, Macintosh, A. & Cooper, C. (eds), SGES Pubs, Oxford, 1995, 335-348; ISBN 1
899621 03 2;
Penn, A., Treleaven, P., Hillier, B., Conroy, R., Dalton, N., Dekker, L., Mottram, C., Turner, A., (1996) PANGEA: AN INTELLIGENT WORKBENCH

FOR ARCHITECTURAL SKETCH DESIGN Watson, I. & Morgan, A. (eds), The Intelligent Systems Integration Prgogramme ES96 Papers, SGES
Pubs, Oxford, 1996, 127-139; ISBN 1 899621 14 8
Penn, A., Treleaven, P., Hillier, Bull, L., B., Conroy, R., Dalton, N., Dekker, L., Mottram, C., Turner, A., (1996a) PANGEA v2.1b CD-ROM and

Pangea User Manual, UCL, London, ISBN 0902137 38 7;
Penn, A., Desyllas, J. & Vaughan, L., (1997) The space of innovation: Interaction and communication in the work environment, Proceedings of the

First International Space Syntax Symposium, UCL, London, 1997;

P R O C E E D I N G S V O L U M E I I • M E T H O D O L O G Y

S P A C E S Y N T A X F I R S T I N T E R N A T I O N A L S Y M P O S I U M • L O N D O N � � � �

�����

